Многоспектральный ИК пожарный извещатель X301
PointWatch Eclipse® ИК газоанализатор
FlexVu® Универсальный дисплей с извещателем токсичного газа GT3000
Eagle Quantum Premier® Система обеспечения пожарной и газовой безопасности

Извещатель пожарный пламени для обнаружения горения водорода X3302 Protect•IR®

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

© Copyright Detector Electronics Corporation 2013. Все права защищены.

Detector Electronics Corporation
6901 West 110th Street
Minneapolis, MN 55438 USA
T: 952.941.5665 or 800.765.3473
F: 952.829.8750
W: http://www.det-tronics.com
E: det-tronics@det-tronics.com

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ 95-3576

Версия 6.2 1/13 95-3576
ИЗВЕЩАТЕЛЬ ПОЖАРНЫЙ ПЛАМЕНИ ДЛЯ ОБНАРУЖЕНИЯ ГОРЕНИЯ ВОДОРОДА ВЗРЫВОЗАЩИЩЁННЫЙ

Х3302 Protect-IR®
Оглавление

Краткое описание

ХАРАКТЕРНЫЕ ОСОБЕННОСТИ... 7
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ... 8
УСТРОЙСТВО И ОПИСАНИЕ РАБОТЫ... 11
ВЫХОДНЫЕ СИГНАЛЫ.. 12
Аналоговый 0-20 мА... 12
Релейный ... 12
Адресный (модель EQP).. 13
СВЕТОДИОДНЫЙ ИНДИКАТОР СОСТОЯНИЙ.............................. 13
ОПИСАНИЕ ТЕСТИРОВАНИЯ ОПТИКИ.. 12
Автоматический режим ех.. 12
Магнитный переключатель ех / Ручной режим проверки ех........ 13
КОММУНИКАЦИОННАЯ СВЯЗь.. 14
КЛЕММНЫЙ ОТСЕК.. 14
РЕГИСТРАЦИЯ ДАННЫХ... 15

ОБЩАЯ ИНФОРМАЦИЯ ПО ПРИМЕНЕНИЮ... 15
Характеристики чувствительности извещателя.................... 15
Важные замечания по применению.. 15
Сварка .. 15
Осветительные лампы .. 15
Помехоустойчивость ... 15
Источники углородистых пожаров 15

МЕРЫ ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ.. 16
УСТАНОВОЧНЫЕ И ЭЛЕКТРОМОНТАЖНЫЕ РАБОТЫ.................. 17
Расположение извещателя .. 17
Ориентация извещателя ... 18
Обеспечение влагозащищенности .. 18
Процедура электрического монтажа 19
Требования к проводам и кабелям .. 19
Установка извещателя ... 20
Модели с релейным и аналоговыми 0-20 мА выходами........... 20
Окончание сопротивление шлейфа (EOL).................................. 23
Модель извещателя в адресном исполнении (модель EQP)........ 27

УСТАНОВКА АДРЕССОВ УСТРОЙСТВ СИСТЕМЫ.......................... 30
ПУСКО-НАЛАДОЧНЫЕ РАБОТЫ.. 31
ПРОВЕРКА И УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ.................. 32
ТЕХНИЧЕСКОЕ СОПРОВОЖДЕНИЕ .. 33
Процедура очистки светильных отверстий 33
Снятие и замена рефлектора.. 33

ЭНЕРГОПИТАНИЕ СЧЕТЧИКА ВРЕМЕНИ... 35
ЗАПАСНЫЕ ЧАСТИ.. 35
Источник ложной тревоги	Расстояние до источника, (м)	Тестовый очак/Расход (слм)	Расстояние до очага, (м)	Время отклика типовое, (с)**
Солнечный свет - прямой, немодулированный | ⩾H2/100 | 7,6 | 3,5
Солнечный свет - прямой, модулированный | ⩾H2/100 | 7,6 | 3,5
Солнечный свет - отражённый, немодулированный | ⩾H2/100 | 7,6 | 2,5
Солнечный свет - отражённый, модулированный* | ⩾H2/100 | 7,6 | 2,5
Излучение от электродуговой сварки, непрерывное | 1,5 | H2/100 | 7,6 | 3
Излучение от электродуговой сварки, модулированное | 1,5 | H2/100 | 5,3 | 2,5
Излучение от катодной лампы 70 Вт, немодулированное | 0,9 | H2/100 | 7,6 | 3
Излучение от катодной лампы 70 Вт, модулированное | 0,9 | H2/100 | 7,6 | 2
Излучение от лампы газоразрядной лампы 250 Вт, немодулированное | 0,9 | H2/100 | 7,6 | 3
Излучение от лампы газоразрядной лампы 250 Вт, модулированное | 0,9 | H2/100 | 5,3 | 2
Излучение от лампы накаливания 300 Вт, немодулированное | 0,9 | H2/100 | 7,6 | 3
Излучение от лампы накаливания 300 Вт, модулированное | 0,9 | H2/100 | 4,6 | 2
Излучение от галогеновой лампы 500 Вт, с защитным стеклом, немодулированное | 1,5 | H2/100 | 7,6 | 3,5
Излучение от галогеновой лампы 500 Вт, с защитным стеклом, модулированное | 1,5 | H2/100 | 3 | 2,5
Излучение от электротемпературыи мощностью 1500 Вт, немодулированное | 0,9 | H2/100 | 7,6 | 2
Излучение от электротемпературыи мощностью 1500 Вт, модулированное | 0,9 | H2/100 | 3 | 2
Излучение от двух флуоресцентных ламп 34 Вт, немодулированное | 0,6 | H2/100 | 7,6 | 3
Излучение от двух флуоресцентных ламп 34 Вт, модулированное | 0,6 | H2/100 | 7,6 | 3,5

* Испытания вне помещения.
** Для моделей EQP во времени отклика добавляются 2 секунды.
<table>
<thead>
<tr>
<th>Средняя чувствительность</th>
<th>Источник ложной тревоги</th>
<th>Расстояние до источника, (м)</th>
<th>Тестовый очаг/Расход (сл/м)</th>
<th>Расстояние до очага, (м)</th>
<th>Время отклика типовое, (с)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Солнечный свет — прямой, немодулированный*</td>
<td>---</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Солнечный свет — прямой, модулированный*</td>
<td>---</td>
<td>H2 / 200</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Солнечный свет — отражённый, немодулированный*</td>
<td>---</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Солнечный свет — отражённый, модулированный*</td>
<td>---</td>
<td>H2 / 100</td>
<td>7,6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Излучение от электродуговой сварки, непрерывное</td>
<td>3</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Излучение от электродуговой сварки, модулированное</td>
<td>3</td>
<td>H2 / 100</td>
<td>10,7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Излучение от натриевой лампы 70 Вт, немодулированное</td>
<td>1,5</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>Излучение от натриевой лампы 70 Вт, модулированное</td>
<td>1,5</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Излучение от лампы газоразрядной лампы 250 Вт, немодулированное</td>
<td>1,5</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Излучение от лампы газоразрядной лампы 250 Вт, модулированное</td>
<td>1,5</td>
<td>H2 / 100</td>
<td>10,7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Излучение от лампы накаливания 300 Вт, немодулированное</td>
<td>1,5</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Излучение от лампы накаливания 300 Вт, модулированное</td>
<td>1,5</td>
<td>H2 / 100</td>
<td>9,1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Излучение от галогеновой лампы 500 Вт, с защитным стеклом, немодулированное</td>
<td>2,4</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Излучение от галогеновой лампы 500 Вт, с защитным стеклом, модулированное</td>
<td>2,4</td>
<td>H2 / 100</td>
<td>5,3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Излучение от электрического обогревателя мощностью 1500 Вт, немодулированное</td>
<td>1,5</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Излучение от электрического обогревателя мощностью 1500 Вт, модулированное</td>
<td>1,5</td>
<td>H2 / 100</td>
<td>6,1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Излучение от двух флюоресцентных ламп 34 Вт, немодулированное</td>
<td>0,9</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>Излучение от двух флюоресцентных ламп 34 Вт, модулированное</td>
<td>0,9</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

* Испытания вне помещения.
** Для модели EQP ко времени отклика добавляются 2 секунды.

** ДЕЙСТВИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ СООТВЕТСТВУЮТ ДАННЫМ ПАТЕНТОВАННОЙ ТЕХНОЛОГИИ X3302, ОПИСАННОЙ В СЛЕДУЮЩИХ ПАТЕНТАХ США: 5,995,008; 5,804,825; 5,850,182; и 5,995,008.**
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Напряжение электропитания, В пост. тока — 32 В с включённым подогревателем.

Потребляемая мощность, Вт —
- без подогревателя: в дежурном режиме при 32 В — 9,5 Вт,
- в режиме "Пожар" при 32 В — 35,76 Вт.

Время готовности после включения — 30 с.

Температура хранения:
- общий диапазон — -25 °C ... +75 °C,
- только подогреватель, макс. — -18 ... +40 °C.

Температурный диапазон эксплуатации:
- общий диапазон — -55 °C ... +75 °C,
- в дежурном режиме — -55 °C ... +55 °C.

Потребляемая мощность при 32 В с включённым подогревателем — 9,5 Вт.

Время готовности к индикации сигнала тревоги — начальная индикация неисправности прекращается через 0,5 с.

Тип сопротивления нормально замкнутый контакты рассчитаны на коммутацию тока 5 А при напряжении пост. тока до 30 В, в дежурном режиме нормально находятся под напряжением и контакты замкнуты, что указывает на отсутствие неисправности, работает в режиме с фиксацией или без неё.

Выходные клеммы задублированы.

Токовый выход (опция) — двухполюсное на два направления, нормально разомкнутый/нормально замкнутый контакты рассчитаны на коммутацию тока 5 А при напряжении пост. тока до 30 В, в дежурном режиме нормально находятся под напряжением, контакт замывается, что указывает на отсутствие неисправности, работает в режиме с фиксацией или без неё.

Выходные клеммы задублированы.

Вспомогательное реле — двухполюсное на два направления, нормально разомкнутый/нормально замкнутый контакты рассчитаны на коммутацию тока 5 А при напряжении пост. тока до 30 В, в дежурном режиме нормально находятся под напряжением, работает в режиме с фиксацией или без неё.

Токовый выход (опция) — аналоговый выход 0-20 мА (± 0,3 мА) пост. тока может быть нагружен на шлейф сопротивлением 600 Ом макс. при напряжении питания пост. тока от 18 до 19,9 В, и сопротивлением 500 Ом макс. при напряжении питания пост. тока от 20 до 30 В.

Температурный диапазон —
- Эксплуатация: -55 °C ... +75 °C,
- Хранение: -55 °C ... +85 °C.

Примечание: 1. Температура эксплуатации указана для непрерывного режима работы и не распространяется на условия холодного пуска.

2. Максимальная температура внешней среды не должна превышать значений для соответствующего температурного класса взрывозащищённого оборудования, см. параграф Сертификация.

Время отклика в присутствии источников, вызывающих ложные срабатывания

<table>
<thead>
<tr>
<th>Источник ложной тревоги</th>
<th>Расстояние до источника, (м)</th>
<th>Тестовый образец/Расход (сл/м)</th>
<th>Расстояние до очага, (м)</th>
<th>Время отклика типа, (с)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Солнечный свет — прямой, немодулированный*</td>
<td>---</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>5</td>
</tr>
<tr>
<td>Солнечный свет — прямой, модулированный*</td>
<td>H2 / 100</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Солнечный свет — отражённый, немодулированный*</td>
<td>---</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>3</td>
</tr>
<tr>
<td>Солнечный свет — отражённый, модулированный*</td>
<td>H2 / 100</td>
<td>7,6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Излучение от электролюминесцентной сварки, непрерывное</td>
<td>H2 / 100</td>
<td>22,9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Излучение от электролюминесцентной сварки, модулированное</td>
<td>H2 / 100</td>
<td>16</td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>Излучение от нагревательной лампы 70 Вт, немодулированное</td>
<td>H2 / 100</td>
<td>22,9</td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>Излучение от нагревательной лампы 70 Вт, модулированное</td>
<td>H2 / 100</td>
<td>22,9</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>Излучение от лампы газоразрядной лампы 250 Вт, немодулированное</td>
<td>H2 / 100</td>
<td>22,9</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>Излучение от лампы газоразрядной лампы 250 Вт, модулированное</td>
<td>H2 / 100</td>
<td>16</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>Излучение от лампы нагревательной лампы 300 Вт, немодулированное</td>
<td>H2 / 100</td>
<td>22,9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Излучение от лампы нагревательной лампы 300 Вт, модулированное</td>
<td>H2 / 100</td>
<td>13,7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Излучение от галогенной лампы 500 Вт, с защитным стеклом, немодулированное</td>
<td>H2 / 100</td>
<td>22,9</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>Излучение от галогенной лампы 500 Вт, с защитным стеклом, модулированное</td>
<td>H2 / 100</td>
<td>7,9</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>Излучение от электрического обогревателя мощностью 1500 Вт, немодулированное</td>
<td>H2 / 100</td>
<td>22,9</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>Излучение от электрического обогревателя мощностью 1500 Вт, модулированное</td>
<td>H2 / 100</td>
<td>9,1</td>
<td>5,5</td>
<td></td>
</tr>
<tr>
<td>Излучение от двух флуоресцентных ламп 34 Вт, немодулированное</td>
<td>H2 / 100</td>
<td>22,9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Излучение от двух флуоресцентных ламп 34 Вт, модулированное</td>
<td>H2 / 100</td>
<td>22,9</td>
<td>2,5</td>
<td></td>
</tr>
</tbody>
</table>

* Источники вне помещения.
** Для модели EQP ко времени отклика добавляются 2 секунды.
Характеристики, подтверждённые американскими органом по сертификации
FM Approvals

Время отклика в присутствии источников, вызывающих ложные срабатывания
Очень высокая чувствительность

<table>
<thead>
<tr>
<th>Источник ложной тревоги</th>
<th>Расстояние до источника, (м)</th>
<th>Газовый объем (л)</th>
<th>Расстояние до очага, (м)</th>
<th>Время отклика типовое (с) **</th>
</tr>
</thead>
<tbody>
<tr>
<td>Солнечный свет – прямой, немодулированный сигнал *</td>
<td>---</td>
<td>H2 / 50</td>
<td>15,2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H2 / 100</td>
<td>15,2</td>
<td>4</td>
</tr>
<tr>
<td>Солнечный свет – прямой модулированный сигнал *</td>
<td>---</td>
<td>H2 / 200</td>
<td>4,6</td>
<td>6</td>
</tr>
<tr>
<td>Солнечный свет – отражённый немодулированный сигнал *</td>
<td>---</td>
<td>H2 / 50</td>
<td>15,2</td>
<td>2,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H2 / 100</td>
<td>15,2</td>
<td>3,5</td>
</tr>
<tr>
<td>Солнечный свет – отражённый модулированный сигнал *</td>
<td>---</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>2</td>
</tr>
<tr>
<td>Источник от электродуговой сварки, непрерывного излучения</td>
<td>6,1</td>
<td>H2 / 100</td>
<td>30,5</td>
<td>7,5</td>
</tr>
<tr>
<td>Источник от электродуговой сварки, модулированного излучения</td>
<td>6,1</td>
<td>H2 / 100</td>
<td>21,3</td>
<td>3</td>
</tr>
<tr>
<td>Источник от натриевой лампы 70 Вт, немодулированного излучения</td>
<td>3</td>
<td>H2 / 100</td>
<td>30,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Источник от натриевой лампы 70 Вт, модулированного излучения</td>
<td>3</td>
<td>H2 / 100</td>
<td>30,5</td>
<td>3,5</td>
</tr>
<tr>
<td>Источник от лампы газоразрядной лампы 250 Вт, немодулированного излучения</td>
<td>3</td>
<td>H2 / 100</td>
<td>30,5</td>
<td>3</td>
</tr>
<tr>
<td>Источник от лампы газоразрядной лампы 250 Вт, модулированного излучения</td>
<td>3</td>
<td>H2 / 100</td>
<td>30,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Источник от лампы накаливания 300 Вт, немодулированного излучения</td>
<td>3</td>
<td>H2 / 100</td>
<td>30,5</td>
<td>4</td>
</tr>
<tr>
<td>Источник от лампы накаливания 300 Вт, модулированного излучения</td>
<td>3</td>
<td>H2 / 100</td>
<td>30,5</td>
<td>3</td>
</tr>
<tr>
<td>Источник от галогенной лампы 500 Вт, с защитным стеклом, немодулированного излучения</td>
<td>4,6</td>
<td>H2 / 100</td>
<td>30,5</td>
<td>3</td>
</tr>
<tr>
<td>Источник от галогенной лампы 500 Вт, с защитным стеклом, модулированного излучения</td>
<td>4,6</td>
<td>H2 / 100</td>
<td>30,5</td>
<td>2</td>
</tr>
<tr>
<td>Источник от электрического обогревателя мощностью 1500 Вт, немодулированного излучения</td>
<td>3</td>
<td>H2 / 100</td>
<td>30,5</td>
<td>3</td>
</tr>
<tr>
<td>Источник от электрического обогревателя мощностью 1500 Вт, модулированного излучения</td>
<td>3</td>
<td>H2 / 100</td>
<td>30,5</td>
<td>3</td>
</tr>
<tr>
<td>Источник от двух флуоресцентных ламп 34 Вт, немодулированного излучения</td>
<td>1,5</td>
<td>H2 / 100</td>
<td>30,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Источник от двух флуоресцентных ламп 34 Вт, модулированного излучения</td>
<td>1,5</td>
<td>H2 / 100</td>
<td>30,5</td>
<td>2,5</td>
</tr>
</tbody>
</table>

* Испытания вне помещения.
** Для модели EOR ко времени отклика добавляются 2 секунды.

Диапазон влажности —
Извещатель сохраняет работоспособность при относительной влажности воздуха от 0...95%; допускается кратковременное воздействие 100% влажности с конденсацией.

Угол обзора —
Извещатель имеет угол обзора не менее 90° в горизонтальном направлении с максимальным расстоянием обнаружения как вдоль оптической оси, так и под углом к оптической оси при обнаружении пламени водорода и метана.

Время отклика, с —
Типовое время отклика ≤ 10

Монтажные провода и кабели —
Рекомендуется использовать экранированный кабель с номинальным сечением проводов от 22 AWG (0,3 мм2) до 12 AWG (2,5 мм2). На входе извещателя должно обеспечиваться напряжение питания пост. тока не менее 16 В.

Кабельные вводы —
Четыре отверстия размером M25 или 3/4 дюйма NPT, герметизация вводов не требуется.

Материал корпуса —
Алюминий без примеси меди или нержавеющая сталь марки 316.

Транспортировочный вес (приблизительный), кг —
Алюминиевый корпус - 2,7
Корпус из нержавеющей стали - 4,5
Монтажный кронштейн из алюминия - 2,75
Монтажный кронштейн из нерж. стали - 6,4

Габаритные размеры — см. рис. 1.

Гарантийный срок — 5 лет.

Сертификация —
ВНИИФТРИ:
Сертификат Соответствия № C- US.SPб6001.В00972.
ВНИИФТРИ:
Сертификат Соответствия ГОСТ Р №. РОСС US Г606.В00883.

Вид взрывозащиты - взрывонепроницаемая оболочка "д" или вида "е":
Маркировка взрывозащиты 2ExdeIICT5/T6 или 1ExdIIC4/T5/T6
Temperatura класса для маркировки 1EхdIIС —
T6 (Tкрат = 55° ... + 60°С), T5 (Tкрат = 55° ... + 75°С), T4 (Tкрат = 55° ... + 125°С)

Степень защиты оболочек по ГОСТ 14254 - IP66.

Приложение
За информацией об установке оконечного сопротивления EOL обращайтесь к соответствующему разделу. Кабельные вводы должны иметь вид взрывозащиты Exd. В неиспользуемых отверстиях кабельных вводов должны быть установлены заглушки также с видом взрывозащиты Exd.
Рис. 1. Габаритные размеры извещателя в дюймах (см).

<table>
<thead>
<tr>
<th>Источник ложной тревоги</th>
<th>Расстояние до источника, (м)</th>
<th>Сигнал тревоги при модулированном вх. сигнале</th>
<th>Сигнал тревоги при немодулированном вх. сигнале</th>
</tr>
</thead>
<tbody>
<tr>
<td>Солнечный свет - прямой и отражённый</td>
<td>—</td>
<td>Очень высокая</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Вибрация</td>
<td>—</td>
<td>Высокая</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Излучение от электродуговой сварки</td>
<td>6,1</td>
<td>Средняя</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Излучение от натриевой лампы 70 Вт</td>
<td>3,0</td>
<td>Низкая</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Излучение от газоразрядной лампы 250 Вт</td>
<td>3,0</td>
<td>Охлаждённый, высокая</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Излучение от лампы накаливания 300 Вт</td>
<td>3,0</td>
<td>Охлаждённый, высокая</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Излучение от галогеновой лампы 500 Вт, с защитным стеклом</td>
<td>4,6</td>
<td>Охлаждённый, средняя</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Излучение от электрического обогревателя мощностью 1500 Вт</td>
<td>3,0</td>
<td>Охлаждённый, низкая</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Излучение от двух 34 Вт флуоресцентных ламп</td>
<td>1,5</td>
<td>Отсутствует</td>
<td>Отсутствует</td>
</tr>
</tbody>
</table>

Характеристики, подтверждённые американским органом по сертификации FM Approvals
Низкая чувствительность

<table>
<thead>
<tr>
<th>Тестовый очаг</th>
<th>Размер очага (м) / Расход (сл/м²)</th>
<th>Расстояние до очага (м)</th>
<th>Горизонтальная плоскость</th>
<th>Вертикальная плоскость</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Угол обзора</td>
<td>Время отклика типовое, (с)**</td>
</tr>
<tr>
<td>Водород</td>
<td>Факел 0,61 / 100</td>
<td>7,6</td>
<td>+45</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-45</td>
<td>2</td>
</tr>
<tr>
<td>Метанол</td>
<td>0,3 х 0,3</td>
<td>5,3</td>
<td>+45</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-45</td>
<td>7</td>
</tr>
</tbody>
</table>

* сл/м² – Стандартный литр в минуту, определяется стандартным условиям Tamb=25°C и атмосферным давлением в 1атм (14,696 psi)
** Для модели EQP ко времени отклика добавляются 2 секунды.

УСТРОЙСТВО И ОПИСАНИЕ РАБОТЫ

Модель Х3302 представляет собой извещатель пламени инфракрасного (ИК) диапазона, выполняющий трудную задачу обнаружения невидимых очагов пожаров, вызванных горением водорода. Работа извещателя Х3302 основана на анализе инфракрасного излучения при образовании водяного пара в качестве продукта горения водорода, выполняемого в условиях ограниченного диапазона обнаружения. В процессе анализа используется подтверждённая в эксплуатации мультиспектральная инфракрасная технология (MIR), позволяющая значительно снизить количество ложных срабатываний. В результате, применение извещателя Х3302, обладающего непревзойдённой чувствительностью и распознаванием источников не открытого пламени, возможно там, где традиционные извещатели пламени неприемлемы.

Использование запатентованных алгоритмов обработки сигнала извещателя модели Х3301 применительно к модели Х3302 обеспечивает значительный шаг вперёд в обнаружении пожаров/наблюдении за взрывопожароопасными материалами, которые в процессе горения выделяют в основном водяные пары и совсем не выделяют, или выделяют незначительное количество, двуокись углерода.

При использовании извещателя Х3302 возможности обнаружения удвоены по сравнению с традиционными извещателями УФ и УФ/ИК диапазонов. В тоже время, извещатель неоспоримо превосходит по солнечному излучению и искусственному освещению, молнии и излучению "чёрного тела", которым до сих пор подвержены другие технологии, используемые для обнаружения пожаров.

Извещатель выполнен в соответствии с требованиями, предъявляемыми к взрывозащищённому оборудованию группы II по ГОСТ Р 51330.0, -1, -8 и -17, и предназначен для применения во взрывоопасных зонах внутри и вне помещений.

Стандартная конфигурация извещателя Х3302 включает в себя реле пожара, реле неисправности и вспомогательное реле. Возможны также следующие выходы:
- аналоговый 0-20 мА (совместно с трёмя релейными выходами);
- импульсный, совмещенный для работы в существующих системах с использованием контроллеров (имеются реле пожара и неисправности);
- адресный для работы в системе EQP (Eagle Quantum Premier). В данной модели релейный и аналоговый выходы отсутствуют;
- коммуникационный для работы с HART-коммуникатором.

3-х цветный светодиод на фронтальной плоскости извещателя выполняет роль индикатора нормального режима работы и оповещает персонал о состоянии пожарной тревоги или неисправности. Применение контролируемого микропроцессором обогрева оптики повышает устойчивость к влаге и образованию наледи.

Корпус извещателя Х3302 выполняется из алюминия без примесей меди или нержавеющей стали со степенью защиты оболочки от воздействий внешней среды IP66 по ГОСТ 14254.

Ниже приводится перечень дополнительных руководств по эксплуатации (РЭ), связанных с применением извещателя Х3302:

<table>
<thead>
<tr>
<th>Название</th>
<th>Номер документа</th>
</tr>
</thead>
<tbody>
<tr>
<td>Извещатель с импульсным выходом</td>
<td>95-3578</td>
</tr>
<tr>
<td>Извещатель адресный</td>
<td>95-3533</td>
</tr>
<tr>
<td>Инструкция по применению протокола связи HART</td>
<td>95-3613</td>
</tr>
</tbody>
</table>
ВЫХОДНЫЕ СИГНАЛЫ

Релейный
Контакты каждого реле стандартной модели извещателя обеспечивают коммутацию тока до 5А при напряжении постоянного тока до 30 В и резистивной нагрузке. Реле пожара имеет нормально разомкнутый и нормально замкнутый контакты, и дублирующие входные/выходные клеммы. При отсутствии сигнала пожара реле пожара находится в обесточенном состоянии и может работать в режимах с фиксацией или без неё. Реле неисправности также имеет дублирующие входные/выходные клеммы и нормально разомкнутые контакты. Это реле в нормальном режиме находится под напряжением питания и может работать в режимах с фиксацией или без неё. Вспомогательное реле имеет нормально разомкнутый и нормально замкнутый контакты и может программироваться для двух состояний – обесточено или под напряжением питания. Реле также может работать в режиме с фиксацией или без неё.

Аналоговый выход 0–20 мА
Данный выход предназначен в дополнение к трёхрелейной модели. Выходной сигнал 0–20 мА пост. тока служит для передачи информации о состоянии извещателя другим контрольным устройствам. Выходная цепь может быть подсоединена по изолированной или неизолированной схеме и может быть нагружена на максимальное сопротивление шлейфа 500 Ом при напряжении питания от 18 до 20 В пост. тока, а на сопротивление 600 Ом при напряжении от 20 до 30 В пост. тока. Соответствие величины токового сигнала различным состояниям извещателя приведены в таблице 1. Этот выход калибруется на предприятии и не нуждается в повторной калибровке в условиях эксплуатации.

ПРИМЕЧАНИЕ
Аналоговый сигнал токовой цепи 0–20 мА не контролируется схемой обнаружения неисправностей извещателя. Следовательно, отсутствие сигнала не вызовет срабатывания реле неисправности или изменения индикации светодиода. Индикация светодиода всегда соответствует состоянию релейного выхода.

ВРЕМЯ ОТКЛИКА В ЗАВИСИМОСТИ ОТ УГЛА ОБЗОРА И ЧУВСТВИТЕЛЬНОСТИ

Очень высокая чувствительность

<table>
<thead>
<tr>
<th>Тестовый очаг</th>
<th>Размер очага (м) / Расход (слм)</th>
<th>Горизонтальная плоскость</th>
<th>Вертикальная плоскость</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Угол обзора</td>
<td>Время отклика типовое, (с)**</td>
</tr>
<tr>
<td>Водород</td>
<td>Фазен 0,61 / 100</td>
<td>30,5</td>
<td>+45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-45</td>
<td>2,5</td>
</tr>
<tr>
<td>Метанол</td>
<td>0,3 х 0,3</td>
<td>21,3</td>
<td>+45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-45</td>
<td>6</td>
</tr>
</tbody>
</table>

Высокая чувствительность

<table>
<thead>
<tr>
<th>Тестовый очаг</th>
<th>Размер очага (м) / Расход (слм)</th>
<th>Горизонтальная плоскость</th>
<th>Вертикальная плоскость</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Угол обзора</td>
<td>Время отклика типовое, (с)**</td>
</tr>
<tr>
<td>Водород</td>
<td>Фазен 0,61 / 100</td>
<td>22,9</td>
<td>+45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-45</td>
<td>2,5</td>
</tr>
<tr>
<td>Метанол</td>
<td>0,3 х 0,3</td>
<td>16</td>
<td>+45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-45</td>
<td>3,5</td>
</tr>
</tbody>
</table>

Средняя чувствительность

<table>
<thead>
<tr>
<th>Тестовый очаг</th>
<th>Размер очага (м) / Расход (слм)</th>
<th>Горизонтальная плоскость</th>
<th>Вертикальная плоскость</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Угол обзора</td>
<td>Время отклика типовое, (с)**</td>
</tr>
<tr>
<td>Водород</td>
<td>Фазен 0,61 / 100</td>
<td>15,2</td>
<td>+45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-45</td>
<td>3,5</td>
</tr>
<tr>
<td>Метанол</td>
<td>0,3 х 0,3</td>
<td>10,7</td>
<td>+45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-45</td>
<td>6</td>
</tr>
</tbody>
</table>

Режим пожара имеет приоритет по отношению к состоянию неисправности, за исключением, когда неисправность приведет подаче извещателем сигнала пожарной тревоги, как, например, при потере напряжения питания.

Приложение

Индикация состояний извещателя

<table>
<thead>
<tr>
<th>Уровень сигнала (±0,3 мА)</th>
<th>Состояние извещателя</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 мА</td>
<td>Неисправность источника питания</td>
</tr>
<tr>
<td>1 мА</td>
<td>Общая неисправность</td>
</tr>
<tr>
<td>2 мА</td>
<td>Неисправность функции ох</td>
</tr>
<tr>
<td>3 мА</td>
<td>Высокое фоновое ИК – излучение</td>
</tr>
<tr>
<td>4 мА</td>
<td>Дежурный (нормальный) режим работы</td>
</tr>
<tr>
<td>20 мА</td>
<td>Сигнал пожара</td>
</tr>
</tbody>
</table>

* sl/m – Стандартный литр в минуту, определяется стандартными условиями Tamb=25°C и атмосферным давлением в Там (14,696 psi)
** Для моделей EQP ко времени отклика добавляются 2 секунды.
Характеристики, подтверждённые американским органом по сертификации FM Approvals

Низкая чувствительность

<table>
<thead>
<tr>
<th>Тестовый очаг</th>
<th>Размер очага (м) / Расход (сл./м²)</th>
<th>Расстояние до очага (м)</th>
<th>Время отклика типовое, (с)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Водород</td>
<td>Факел 0,61 / 100</td>
<td>7,6</td>
<td>3</td>
</tr>
<tr>
<td>Метанол</td>
<td>0,3 х 0,3</td>
<td>5,3</td>
<td>3</td>
</tr>
</tbody>
</table>

* сл/м² – Стандартный литр в минуту, определяется стандартными условиями Tamb=25°C и атмосферным давлением в 1атм (14,696 psi)

** Для модели EQP ко времени отклика добавляются 2 секунды.

Адресный выход (модель EQP)

Модель EQP разработана для применения исключительно с системой пожарной и газовой безопасности Eagle Quantum Premier компании Det-Tronics. Извещатель обменивается информацией с системным контроллером через локальную операционную сеть LON (шифл связи). Сеть LON представляет собой отказоустойчивую двухпроводную цифровую коммуникационную сеть, организованную по кольцевому шлейфу. Аналоговый и релейные выходы в данной модели отсутствуют.

СВЕТОДИОДНЫЙ ИНДИКАТОР СОСТОЯНИЙ

3-х цветный светодиод на фронтальной плоскости извещателя выполняет роль индикатора нормального режима работы и оповещает персонал о состояниях пожарной тревоги или неисправности. Состояния индикации светодиода приведены в таблице 2.

Таблица 2

<table>
<thead>
<tr>
<th>Состояние извещателя</th>
<th>Свечение светодиода</th>
</tr>
</thead>
<tbody>
<tr>
<td>Напряжение питания включено, дежурный режим работы (сигналы неисправности или пожара отсутствуют)</td>
<td>Зелёное</td>
</tr>
<tr>
<td>Несправность</td>
<td>Жёлтое</td>
</tr>
<tr>
<td>Пожар (тревога)</td>
<td>Красное</td>
</tr>
<tr>
<td>Низкая чувствительность</td>
<td>Одна вспышка жёлтого цвета при включении напряжения питания</td>
</tr>
<tr>
<td>Средняя чувствительность</td>
<td>Две вспышки жёлтого цвета при включении напряжения питания</td>
</tr>
<tr>
<td>Высокая чувствительность</td>
<td>Три вспышки жёлтого цвета при включении напряжения питания</td>
</tr>
<tr>
<td>Очень высокая чувствительность</td>
<td>Четыре вспышки жёлтого цвета при включении напряжения питания</td>
</tr>
</tbody>
</table>

ОПИСАНИЕ ТЕСТИРОВАНИЯ ОПТИКИ - ФУНКЦИЯ оi

Автоматический режим проверки оi

В извещателе Х3302 используется автоматическая функция контроля оптики оi, которая автоматически выполняет ежеминутную калиброванную проверку правильного функционирования извещателя. При этом использование внешнего контрольного источника ИК-излучения (тестовой лампы) не требуется. Успешное выполнение автоматической проверки не вызывает перехода в режим "Пожар".

Сигнал неисправности вырабатывается при падении чувствительности до уровня, при котором расстояние обнаружения уменьшается примерно на 50%. При этом срабатывает реле неисправности и светодиод индикации загорается жёлтым светом. За детальной информацией обращайтесь в раздел "Обнаружение неисправностей и методы их устранения".
Магнитный переключатель (Ручной режим проверки)
Тестирование извещателя может также осуществляться с помощью магнитного переключателя (геркона) или методом ручной проверки, которые выполняют ту же задачу, что и автоматическая функция, и, в дополнение, активируют реле пожара для проверки работоспособности в соответствии с требованиями профилактического обслуживания. Эти процедуры могут выполняться в любое время и также не требуют использования внешней тестовой памяти.

ПРЕДУПРЕЖДЕНИЕ
Указанные тестовые испытания должны производиться при отключённой системе пожаротушения.

Тестирование с помощью магнитного переключателя выполняется размещением магнита в обозначенном месте (МАГ или на корпусе извещателя. Ручной метод тестирования обеспечивается закорачиванием (контакта), ("MAN Ман", клемма 22) на отрицательный полюс источника питания с помощью внешнего выключателя. Для выполнения цикла проверки магнит или внешний выключатель должны удерживаться в указанном положении не менее 6 секунд. Любой из этих методов активирует эмиттер внутреннего источника ИК-излучения. Если результирующий сигнал соответствует тестовым критериям, указывающим, что извещатель сохраняет более половины диапазона обнаружения, то тогда реле пожара изменит своё состояние и светодиод индикации загорается красным светом. При этом уровень выходного сигнала сохраняет более половины диапазона обнаружения, то тогда реле пожара изменит своё состояние и светодиод индикации загорается красным светом. При этом уровень выходного сигнала достигает величины 20 мА. Это состояние извещателя сохраняется до тех пор, пока не удаляется магнит или не отключается реле пожара для проверки работоспособности в режиме без фиксации, то оно обесточивается и светодиод загорается зелёным светом. Если реле установлено на режим с фиксацией, то они сбрасываются в исходное состояние кратковременным отключением питания напряжением минимум 0,1 с, кратковременным приложением магнита или переключением внешнего выключателя Ман.

Если тестовый критерий указывает на то, что остаётся менее половины диапазона обнаружения, то сигнал пожара не подаётся, а вырабатываются сигнал неисправности. Индикация неисправности может быть сброшена кратковременным приложением магнита или переключением внешнего выключателя Ман.

ПРИЛОЖЕНИЕ
Характеристики, подтверждённые американским органом по сертификации FM Approvals, см. приложение к данному руководству.

КОММУНИКАЦИОННАЯ СВЯЗЬ
Для передачи данных о своём состоянии и другой информации внешним устройствам в извещателе Х302 используются последовательный интерфейс RS-485. Интерфейс RS-485 поддерживает протокол MODBUS с извещателем, сконфигурированным как управляемое устройство. Для работы с протоколом HART в цепи 0-20 мА требуется установка сопротивления 250 Ом.

ПРИМЕЧАНИЕ
Модель EQP использует коммуникационную связь LON. Интерфейсы RS-485 и HART в данной модели отсутствуют.

КЛЕММНЫЙ ОТСЕК
Все внешние кабели подводятся к извещателю через внутренний клеммный отсек, являющийся составной частью корпуса извещателя. В корпусе предусмотрены четыре отверстия с резьбой M25 или 3/4 дюйма под кабельные вводы.

ПРОВЕРКА АВТОМАТИЧЕСКОЙ ФУНКЦИИ
Извещатель вырабатывает сигнал неисправности оптических элементов при появлении загрязнителей на поверхности любой из оптических линз или нескольких линз одновременно, вызывающих потери диапазона обнаружения приблизительно в 50 %, подтверждая таким образом, что извещатель выполняет калиброванную функцию автоматической проверки оптической цепи каждого из трёх сенсоров. После удаления загрязнений, сигнал неисправности извещателя сбрасывается и подтверждается способность извещателя в обнаружении пламени.

Проверка автоматической функции
Ручная функция тестирования или проверка функции с помощью магнита выполняют такую же проверку работоспособности извещателя, что и автоматическая функция, и, в дополнении, активируют выходной сигнал контроллера и релейный выход, подтверждающий работоспособность выходных цепей. В случае потери диапазона обнаружения в 50 % сигнал пожара не подаётся.

ВРЕМЯ ОТКЛЮЧАЕТСЯ В ЗАВИСИМОСТИ ОТ ЧУВСТВИТЕЛЬНОСТИ ИЗВЕШАТЕЛЯ:

<table>
<thead>
<tr>
<th>Тестовый очаг</th>
<th>Размер очага (м)</th>
<th>Расстояние до очага (м)</th>
<th>Время отклика (с)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Водород</td>
<td>Факел 0,61 / 100</td>
<td>30,5</td>
<td>3</td>
</tr>
<tr>
<td>Метанол</td>
<td>0,3 х 0,3</td>
<td>22,9</td>
<td>3</td>
</tr>
</tbody>
</table>

Очень высокая чувствительность

<table>
<thead>
<tr>
<th>Тестовый очаг</th>
<th>Размер очага (м)</th>
<th>Расстояние до очага (м)</th>
<th>Время отклика (с)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Водород</td>
<td>Факел 0,61 / 100</td>
<td>30,5</td>
<td>3</td>
</tr>
<tr>
<td>Метанол</td>
<td>0,3 х 0,3</td>
<td>22,9</td>
<td>3</td>
</tr>
</tbody>
</table>

Высокая чувствительность

<table>
<thead>
<tr>
<th>Тестовый очаг</th>
<th>Размер очага (м)</th>
<th>Расстояние до очага (м)</th>
<th>Время отклика (с)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Водород</td>
<td>Факел 0,61 / 100</td>
<td>15,2</td>
<td>4</td>
</tr>
<tr>
<td>Метанол</td>
<td>0,3 х 0,3</td>
<td>10,7</td>
<td>4</td>
</tr>
</tbody>
</table>

Средняя чувствительность

<table>
<thead>
<tr>
<th>Тестовый очаг</th>
<th>Размер очага (м)</th>
<th>Расстояние до очага (м)</th>
<th>Время отклика (с)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Водород</td>
<td>Факел 0,61 / 100</td>
<td>15,2</td>
<td>4</td>
</tr>
<tr>
<td>Метанол</td>
<td>0,3 х 0,3</td>
<td>10,7</td>
<td>4</td>
</tr>
</tbody>
</table>
РЕГИСТРАЦИЯ ДАННЫХ
В извещателе Х3302 предусмотрена возможность регистрации событий. Регистрируются такие события, как дежурный режим работы, отключение напряжения питания, общая неисправность и неисправность оптических цепей, предварительная тревога, реальное время и температура. Каждое событие имеет отметку времени и даты, температуры и величины входного напряжения. Данные о событиях заносятся в энергонезависимую память в момент активации события, а затем при изменении состояния извещателя. Доступ к данным производится через интерфейсный порт RS-485 или через контроллер системы EQR.

ОБЩАЯ ИНФОРМАЦИЯ ПО ПРИМЕНЕНИЮ

ХАРАКТЕРИСТИКИ ЧУВСТВИТЕЛЬНОСТИ ИЗВЕЩАТЕЛЯ

Чувствительность зависит от расстояния до источника пламени, типа источника загорания, температуры топлива и времени, требуемого для установления теплового равновесия пламени. Как и при проведении любых огненных испытаний, результаты должны интерпретироваться в соответствии с конкретным применением.

ВАЖНЫЕ ЗАМЕЧАНИЯ ПО ПРИМЕНЕНИЮ

При использовании любого типа чувствительного устройства в качестве извещателя пламени, важно учитывать любые условия, способные предотвратить отклик этого устройства на пожар, а также другие источники, кроме пламени, способные вызвать срабатывание извещателя.

Сварка

Электродуговая сварка не должна выполняться ближе 5 м от высокочувствительного извещателя, 5 м от извещателя с высокой чувствительностью, 3 м от извещателя с низкой чувствительностью или 1,5 м от извещателя с низкой чувствительностью. Приемные датчики имеют необязательное отключающее устройство, поскольку ртутная молния представляет собой реальное пламя. Электроды, применяемые для электродуговой сварки, могут содержать органические связующие вещества, сгоревшие при сварке, что может привести к срабатыванию извещателя. Сварочные электроды с глинистыми связующими материалами не возвратятся и не вызовут срабатывание извещателя Х3302. Тем не менее, рекомендуется всегда отключать систему пожаротушения, поскольку материалы, подлежащие сварке, могут быть загрязнены органическими веществами (масла и краски), способными возгораться и вызвать срабатывание извещателя.

Особенности системы

Извещатель Х3302 не должен располагаться ближе, чем 0,61 м от источников дополнительного освещения. Эти источники могут вызвать дополнительный нагрев извещателя за счет излучаемого им тепла.

Помехоустойчивость

Извещатель Х3302 устойчив к воздействию электромагнитных и радиочастотных помех и удовлетворяет требованиям стандартов к ЭМП. Извещатель не реагирует на сигнал от 5-ваттного портативного переговорного устройства, удалённого на расстояние более 30 см. Не допускается работать с переговорным устройством в пределах 30 см от извещателя.

Источники углеродистых пожаров

Извещатель Х3302 предназначен для обнаружения источников загораний, выделяющих водяные пары в качестве продуктов сгорания. К таким источникам относится водород, аммиак, ацетилен, метан, метанол. Извещатель Х3302 может срабатывать на горение некоторых лёгких углеродистых материалов в том числе, как тяжёлые углеродистые вещества, сгоревшие при горении темное жёлто-оранжевое пламя и выделяющие густой дым с колопой, могут быть произведены извещателем. К другим источникам пожаров, также не обнаруживаемым извещателем Х3302, относятся сера и горючие металлы.

За консультацией при выборе и заказе системы для конкретной области применения обращайтесь к группу поддержки фирмы Дет-Троникс по адресу:

Detector Electronics Corporation
Field Support Group
6001 West 110th Street
Minneapolis, Minnesota 55438 USA.
Telephone (952) 941-5665 or (800) 765-FIRE
Facsimile (952) 829-8750
УКАЗАНИЕ МЕР ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ

ПРЕДУПРЕЖДЕНИЕ

Не разрешается открывать извещатель во взрывоопасной среде при включённом напряжении питания. В извещателе имеется ограниченное количество подлежащих регулировке или замене компонентов, поэтому извещатель не следует открывать даже в обычной среде. Попытка открыть электронный блок может привести к нарушению уставки оптических узлов и калибровочных параметров, и, возможно, к серьёзным повреждениям. Такие повреждения могут остаться в начале незаметными, но в дальнейшем привести к отказу в обнаружении пожара или к ложному срабатыванию.

ПРЕДУПРЕЖДЕНИЕ

Процедура электромонтажа, указанная в данном руководстве, обеспечивает гарантию правильного функционирования аппарата в нормальных условиях. Тем не менее, из-за наличия многочисленных национальных норм и правил электромонтажа, невозможно гарантировать полное соответствие этим предписаниям. В случае сомнений, перед началом работ проконсультируйтесь с компетентными и официальными организациями.

Электромонтаж и установка извещателя должны выполняться только квалифицированными специалистами.

ПРЕДУПРЕЖДЕНИЕ

Во время тестирования или технического обслуживания, система пожаротушения должна быть отключена во избежание нежелательной активации пожаротушения или подачи сигнала "Пожар".

ПРЕДУПРЕЖДЕНИЕ

Извещатели Х3302 должны устанавливаться в местах с наименьшим риском механического повреждения.

ВНИМАНИЕ!

Снимите защитный колпак смотровых окошек извещателя перед пуском системы обнаружения пожара.

ВНИМАНИЕ!

Соблюдайте правила обращения с устройствами, чувствительными к электростатическим разрядам.

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ И РАСХОДНЫЕ МАТЕРИАЛЫ

<table>
<thead>
<tr>
<th>Каталожный номер</th>
<th>Название</th>
</tr>
</thead>
<tbody>
<tr>
<td>000511-029</td>
<td>Преобразователь интерфейсный RS485 в RS232</td>
</tr>
<tr>
<td>103801-001</td>
<td>Преобразователь интерфейсный RS485 в USB</td>
</tr>
<tr>
<td>007819-001</td>
<td>Программа инспекционного контроля извещателей "Inspector Monitor" W6300B1002 на компактном диске с разъёмом подключения последовательной связи</td>
</tr>
<tr>
<td>007819-002</td>
<td>Программа инспекционного контроля извещателей "Inspector Monitor" W6300B1003 на компактном диске с разъёмом подключения USB</td>
</tr>
<tr>
<td>009207-001</td>
<td>Программа инспекционного контроля извещателей "Inspector Monitor" на компактном диске</td>
</tr>
<tr>
<td>103922-001</td>
<td>Коммуникатор HART 475</td>
</tr>
<tr>
<td>102740-002</td>
<td>Магнит калибровочный</td>
</tr>
<tr>
<td>008002-001</td>
<td>Магнит калибровочный с переходником для крепления на телескопической штанге</td>
</tr>
<tr>
<td>007739-001</td>
<td>Магнит калибровочный с телескопической штанге</td>
</tr>
<tr>
<td>007240-001</td>
<td>Экран воздушный алюминиевый, модель Q1116А1001</td>
</tr>
<tr>
<td>007818-001</td>
<td>Экран воздушный фланцевый алюминиевый, модель Q1118А1001</td>
</tr>
<tr>
<td>007818-002</td>
<td>Экран воздушный фланцевый из нерж. стали, модель Q1118ST001</td>
</tr>
<tr>
<td>009177-001</td>
<td>Кольцо крепления краскозащитного экрана алюминиевое, модель Q1120А1001</td>
</tr>
<tr>
<td>010857-001</td>
<td>Кронштейн монтажный фланцевый, модель Q1130А1001</td>
</tr>
<tr>
<td>006097-001</td>
<td>Лазерный указатель Q1201</td>
</tr>
<tr>
<td>102871-001</td>
<td>Батарейка 3 В литиевая для лазерного указателя</td>
</tr>
<tr>
<td>007255-001</td>
<td>Ограничитель угла обзора на 10° алюминиевый для извещателей Х3301/Х3302, модель Q2033A10R</td>
</tr>
<tr>
<td>007338-001</td>
<td>Ограничитель угла обзора на 20° алюминиевый для извещателей Х3301/Х3302, модель Q2033A20R</td>
</tr>
<tr>
<td>007912-010</td>
<td>Пластина блокировочная для ограничителя угла обзора на 10°, запасная, алюминиевая</td>
</tr>
<tr>
<td>007912-020</td>
<td>Пластина блокировочная для ограничителя угла обзора на 20°, запасная, алюминиевая</td>
</tr>
<tr>
<td>007912-030</td>
<td>Пластина блокировочная для ограничителя угла обзора на 30°, запасная, алюминиевая</td>
</tr>
</tbody>
</table>
ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА

При выборе извещателя Х3302 руководствуйтесь матрицей исполнений, приведённой ниже:

<table>
<thead>
<tr>
<th>Модель</th>
<th>Наименование</th>
</tr>
</thead>
<tbody>
<tr>
<td>Х3302</td>
<td></td>
</tr>
</tbody>
</table>

- **Извещатель пожарный пламени ИК**

Таблица 1. Матрица исполнений

<table>
<thead>
<tr>
<th>Тип Материал корпуса</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>А</td>
<td>Алюминиевый</td>
</tr>
<tr>
<td>С</td>
<td>Стальной из нержавеющей стали</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Тип Резьба отверстий кабелевводов</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4M</td>
<td>4-портовый, M25</td>
</tr>
<tr>
<td>4N</td>
<td>4-портовый, 3/4 дюйма NPT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Тип Выходной сигнал</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Тип Сертификация</th>
</tr>
</thead>
<tbody>
<tr>
<td>Р</td>
</tr>
</tbody>
</table>

- **УСТАНОВОЧНЫЕ И ЭЛЕКТРОМОНТАЖНЫЕ РАБОТЫ**

РАСПОЛОЖЕНИЕ ИЗВЕЩАТЕЛЯ

Извещатели должны размещаться таким образом, чтобы обеспечить наилучший бесприятственный обзор охраняемой зоны. Следует принять во внимание следующие факторы:

- Определение наиболее возможных источников загрязнений.
- Уверенность, что для адекватной защиты контролируемой зоны используется достаточное количество извещателей.
- Обеспечение лёгкого доступа к извещателю для проведения работ по периодическому обслуживанию.
- Расположение и нацеливание извещателя должно быть произведено с учетом расстояния обнаружения и угла обзора извещателя. Более подробная информация приводится в приложении.
- Многоспектральные извещатели ИК диапазона менее подвержены ложному срабатыванию от безпламенных источников ИК-излучения, чем другие типы извещателей (см. таблицу Устойчивость к воздействию источников ложных тревог в приложении). Тем не менее, в некоторых случаях продолжительная модуляция сигналов таких источников вызовет ослабление чувствительности извещателя, проявляющееся в уменьшении расстояния обнаружения пожара (см. приложение). В связи с этим, при установке извещателя Х3302 необходимо избегать таких источников, если возможна длительная и частая модуляция ИК-излучения, создаваемая приведёнными примерами.
- Извещатель должен быть нацелен на объект по нисходящей под углом, по крайней мере, 10 - 20 градусов, см. рис. 2. Такая установка предотвращает скопление влаги на линзах. Угол обзора извещателя не должен охватывать территорию за пределами опасной зоны, что позволит значительно уменьшить влияние потенциальных источников ложных тревог, находящихся за пределами этой зоны.
- Для получения наилучших показателей работы, извещатель должен монтироваться на жесткой, не подверженной вибрации поверхности.
- Сильный туман, дождь или наледь поглощают ИК-излучение и ухудшают характеристики чувствительности извещателя.
- Хотя извещатели ИК диапазона менее подвержены влиянию дыма на их характеристики, извещатель Х3302 не должен размещаться в местах возможного потока продуктов горения, способных ограничить видимость. Если ожидается скопление дыма до появления открытого пламени, то совместно с извещателем должны применяться дымовые или тепловые датчики. При применении извещателя в помещениях, где скопление плотного дыма может предшествовать появлению пламени, он должен монтироваться на стене на высоте примерно 1 м от потолка.
- Там, где это возможно, желательно проведение тестовых пожаров, для определения правильного расположения извещателей и охватываемой ими контролируемой зоны.
ПРОЦЕДУРА ПЕРИОДИЧЕСКОЙ ПРОВЕРКИ
Для обеспечения правильной работы системы, она должна регулярно проверяться на плановой основе с использованием ручной функции или магнитного переключателя. Тестирование системы следует проводить как описывается в разделе "Проверка подачи сигнала пожара". Если извещатель не срабатывает должным образом, обращайтесь к разделу "Обнаружение и устранение неисправностей".

ЭНЕРГОПИТАНИЕ СЧЁТЧИКА ВРЕМЕНИ
(В адресной модели извещателя счётчик не используется)
В качестве резервного источника энергопитания для часового счёта времени используется литиевая батарейка, способная обеспечить работу таймера в течение 10 лет. Тем не менее, рекомендуется заменять батарейку каждые 7 лет. Проконсультируйтесь с предприятием-изготовителем в отношении замены батарейки.

ПРИМЕЧАНИЕ
Если батарейка резервного источника полностью разрядилась, то это не повлияет на работу извещателя. Однако, это может повлиять на отметку времени и даты в журнале событий.

ЗАПАСНЫЕ ЧАСТИ
Извещатель Х3302 не предназначен для ремонта пользователем в процессе эксплуатации. При возникновении проблем, следует обратиться к разделу "Обнаружение и устранение неисправностей". Если определено, что проблема вызвана дефектом извещателя, то он должен быть возвращён на предприятие-изготовитель для ремонта.

РЕМОНТ И ВОЗВРАТ УСТРОЙСТВА
Перед возвратом извещателя свяжитесь с ближайшим отделением фирмы Детектор Электроникс для присвоения номера заявки на обслуживание (Service Order number). К возвращаемому устройству или детали необходимо приложить письменное заявление с описанием неисправности, чтобы ускорить обнаружение причин повреждения и, таким образом, сократить для пользователя затраты по времени и стоимости ремонта.

Правильно упакуйте устройство или деталь, используя достаточное количество упаковочного и антистатического материала. При возврате оборудование следует направлять с предоплатой транспортировки по адресу предприятия в г. Миннеаполис:
Detector Electronics Corporation
6901 West 110th Street
Minneapolis, Minnesota 55438 USA
Telephone (952) 941-5665 or (800) 765-FIRE
3. Установить новый или очищенный рефлектор.

ПРИМЕЧАНИЕ
При установке рефлектора из нержавеющей стали убедитесь в наличие прокладки и её правильной установке, что обеспечивает защиту от влаги и загрязнителей. Равномерная затяжка фиксирующих винтов обеспечивает правильную установку рефлектора.

4. Провести повторную калибровку функции, руководствуясь инструкциями в руководстве по применению программы Inspector Monitor № 95-3581.

ПРЕДУПРЕЖДЕНИЕ
Повторная калибровка функции после замены рефлектора обязательна.

При использовании кабелепроводов, в местах скопления влаги должны быть установлены дренажные устройства для автоматического слива накопившейся воды. Для обеспечения вентилиации конденсата в верхних точках прогонов должны устанавливаться сапуны кабелепроводов. Рекомендуется применять, по крайней мере, один сапун в комплекте с каждым дренажным устройством.

Прогонь кабелепроводов следует монтировать по нисходящей, что предотвратит скопление влаги внутри извещателей или на уплотнителях и обеспечивает сток воды к дренажам. Если такая установка не возможна, то, для предотвращения скопления влаги, установите дренажи до уплотнений кабелепроводов, или установите обводную линию под извещателем с дренажом в нижней точке петли.

Возможно, что при установке уплотнителей кабелепроводов потребуется выполнение требований взрывозащищенности. В извещателях с метрической резьбой кабельных вводов между кабелепроводом и кабельным вводом должна устанавливаться шайба для обеспечения степени защиты оболочки IP 66 или адаптер с уплотнительной прокладкой.

Рефлекторы извещателя
Извещатель Х3302 поставляется с рефлекторами, изготовленными из черной пластмассы или нержавеющей стали. Эти рефлекторы не взаимозаменяемы. При заказе сменных рефлекторов необходимо учитывать материал рефлекторов, подлежащих замене.

При электромонтаже системы должны соблюдаться национальные правила и нормы. Сечение проводов выбирается в зависимости от количества извещателей в системе, напряжения питания в электросети и длины кабеля. Обычно используются экранированные провода сечением 2,5 мм². Длина снимаемой изоляции с концов монтажных проводов 9 мм. На клеммах извещателя Х3302 должно обеспечиваться напряжение питания не менее 18 В.

ПРОЦЕДУРА ЭЛЕКТРОМОНТАЖА
Требования к проводам и кабелям
При электромонтаже системы должны соблюдаться национальные правила и нормы. Сечение проводов выбирается в зависимости от количества извещателей в системе, напряжения питания в электросети и длины кабеля. Обычно используются экранированные провода сечением 2,5 мм². Длина снимаемой изоляции с концов монтажных проводов 9 мм. На клеммах извещателя Х3302 должно обеспечиваться напряжение питания не менее 18 В.
Использование экранированных кабелей для защиты от электромагнитных и радиочастотных помех. При использовании экранированных кабелей, экран должен замыкаться как показано на рис. 8 по 13, и рис.15. Проконсультируйтесь с предприятием-изготовителем, если экранированный кабель не используется. В тех случаях, когда кабель укладывается в кабельный канал, этот канал не должен использоваться для прокладки проводов другого электрооборудования. При необходимости иметь возможность отключения напряжения питания следует обеспечить раздельное устройство прерывания питания.

ВНИМАНИЕ!
Установка и электромонтаж извещателя должен выполняться только квалифицированными специалистами.

Установка извещателя
Укрепить монтажный кронштейн извещателя на жёсткой поверхности. Монтажная поверхность не должна испытывать вибрацию. Установка извещателя должна быть пригодной для использования крепёжных болтов М9 длинной не менее 25 мм и способной выдерживать вес извещателя с установочным кронштейном. За информацией об установочном кронштейне модели Q9033 обращаться к руководству 95-8686. Габаритные и установочные размеры приведены на рис. 4.

Модели с релейным и аналоговым 0-20 мА выходами
При установке электромонтаже данных моделей извещателя Х3302 должна соблюдаться следующая процедура:

1. Подсоединить монтажные провода согласно инструкциям данного руководства и национальным нормам.
 - На рис. 5 показаны клеммники, расположенные внутри клеммного отсека извещателя.
 - На рис. 6 указывается назначение клеммных контактов.
 - На рис. 7 показано подключение оконечного сопротивления шлейфа EQL внутри клеммного отсека извещателя (см. раздел “Оконечное сопротивление шлейфа”).
 - На рис. 8 и 9 приведены примеры подключения извещателя к приёмно-контрольным приборам (ППК).
 - На рис. 10 по 13 приведены примеры подключения извещателя с аналоговым выходом 0-20 мА.

2. Убедиться в правильной разводке всех подводящих проводов.

ПРЕДУПРЕЖДЕНИЕ
Не используйте мегометр для проверки правильности монтажа. Извещатель следует отсоединить перед проверкой правильности проводки системы.

3. Развернуть извещатель для правильного ориентирования на объект и закрепить.

Техническое обслуживание

ПРЕДУПРЕЖДЕНИЕ
Периодическая проверка взрывонепроницаемой щели не требуется, поскольку извещатель не предназначен для обслуживания в полевых условиях и его конструкция обеспечивает адекватную защиту от воздействия окружающей среды.

ПРЕДУПРЕЖДЕНИЕ
Электронный блок извещателя не содержит элементов, ремонтируемых пользователем, и не должен разбираться в полевых условиях.

Для поддержания максимальной чувствительности и устойчивости к воздействию пожарных тревог, смотровые окошки извещателя должны поддерживаться в чистом состоянии. Процедура очистки окошок приведена ниже.

ПРОЦЕДУРА ОЧИСТКИ СМОТРОВЫХ ОКОШЕК

ПРЕДУПРЕЖДЕНИЕ
Перед очисткой окошек извещателя отключите любое оборудование пожаротушения, чтобы исключить возможность нежелательной активации выходов.

При очистке окошек и рефлектора ём используйте мягкую ткань или хлопчато-бумажные салфетки и очистительный раствор для окошек компании Дег-Троникс (кат. номер 001680-904), и соблюдайте следующую процедуру:

1. Отключить всё оборудование пожаротушения, подключённое к извещателю.
2. С помощью монтажного киянки, расположенной внутри клеммного отсека извещателя, отключить все оборудование пожаротушения, подключенное к извещателю.
3. Снимите с окошка или рефлектора ём, как указано далее.
4. Независимо от типа окружающей среды, тщательно прочистите все три смотровых окошка и поверхности рефлектора ём с помощью хлопчато-бумажного тампона и очистительного средства для окошек. Если после очистки индикация неисправности продолжается, то следует снять и прочистить рефлектор ём, как указано далее.
5. При очистке окошек и рефлектора ём используйте мягкую ткань или хлопчато-бумажные салфетки и очистительный раствор для окошек компании Дег-Троникс (ката. номер 001680-904), и соблюдайте следующую процедуру:
 1. Отключить всё оборудование пожаротушения, подключённое к извещателю.
 2. С помощью монтажного киянки, расположенной внутри клеммного отсека извещателя, отключить все оборудование пожаротушения, подключенное к извещателю.
 3. Снимите с окошка или рефлектора ём, как указано далее.
 4. Независимо от типа окружающей среды, тщательно прочистите все три смотровых окошка и поверхности рефлектора ём с помощью хлопчато-бумажного тампона и очистительного средства для окошек. Если после очистки индикация неисправности продолжается, то следует снять и прочистить рефлектор ём, как указано далее.

ВАЖНО
Из-за присутствия в атмосфере корродирующих веществ, отражательная поверхность рефлектора может быть повреждена настолько, что это будет вызывать повторные ошибки ём. В таком случае рефлектор должен быть заменён.

Снятие и замена рефлектора ём
Снятие и замена рефлектора выполняются в следующем порядке:

1. Отключить всё оборудование пожаротушения, подключенное к извещателю.
2. Отпустить два невыпадающих винта, затем, удерживая рефлектор за козырёк, снять его с извещателя (см. рис. 19).
ПРЕДУПРЕЖДЕНИЕ
Электронный блок извещателя не содержит элементов, ремонтимуемых
пользователем, и не должен демонтироваться в полевых условиях.

Отыскание неисправностей или демонтаж извещателя надлежит выполнить в следующем порядке:
1. Отключить всё оборудование пожаротушения, подключённое к извещателю.
2. Убедиться в отсутствие загрязнений на смотровых окошках. Хотя ИК извещатель относительно
нечувствителен к загрязняющим веществам, находящимся в воздухе, тем не менее наледь,
грязь или масляные плёнки уменьшают его чувствительность. Полная информация,
касающаяся очистки линз извещателя приведена в разделе "Техническое обслуживание".
3. Проверить наличие напряжения питания на извещателе.
4. Если система оборудована регистрацией данных, проверить регистр приёмно-контрольного
прибора на наличие информации о состоянии реле и выхода 0-20 мA (см. табл. 3)
5. Отключить напряжение питания извещателя и проверить электромонтаж на обрыв.
 Внимание: Перед началом проверки отсоединить проводку от извещателя.
6. Если проверка электропроводки и очистка смотровых окошек не устранили состояние
 неисправности, то следует убедиться в отсутствии высокого уровня фонового ИК-излучения. Это
 достигается акретем модуля колпаком или алюминиевой фольгой. Если состояние
 неисправности исчезает в течение 6 минут, то это обстоятельство подтверждает присутствие
 фонового ИК-излучения. При этом рекомендуется или переместить извещатель в другое
 местоположение, или изменить его направленность.
 Если ни одна из этих мер не помогает, то извещатель следует вернуть на предприятие-
 изготовитель для ремонта.

ПРИМЕЧАНИЕ
Желательно всегда иметь запасной извещатель для немедленной замены
неисправного устройства и обеспечения непрерывной защиты опасной зоны.

Таблица 3

<table>
<thead>
<tr>
<th>Уровень сигнала (± 0.3 мA)</th>
<th>Состояние извещателя</th>
<th>Меры по устранению неисправности</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 мA</td>
<td>Обрыв цепи</td>
<td>Проверить подводящие провода</td>
</tr>
<tr>
<td>1 мA</td>
<td>Общая неисправность</td>
<td>Перебросить напряжение питания</td>
</tr>
<tr>
<td>2 мA</td>
<td>Неисправность функции E</td>
<td>Очистить смотровые окошки</td>
</tr>
<tr>
<td>3 мA</td>
<td>Высокое фоновое ИК-излучение</td>
<td>Устранить источник фонового излучения или изменить место установки извещателя</td>
</tr>
<tr>
<td>4 мA</td>
<td>Дежурный режим работы</td>
<td></td>
</tr>
<tr>
<td>20 мA</td>
<td>Сигнал пожара</td>
<td></td>
</tr>
</tbody>
</table>

Примечания: 1. Если неисправность не устраняется, то извещатель подлежит возврату
на предприятие-изготовитель для ремонта.
 2. См. раздел "Техническое обслуживание".
Пример адресации:
Для установки адреса точки № 5 замыкаются переключатели 1 и 3 (двоичные значения 1 + 4); для установки адреса точки № 25 замыкаются переключатели 1, 4 и 5 (двоичные значения 1+8+16).

ВАЖНО
Установленные шлейфные адреса извещателей активируются только после подачи входного напряжения питания на устройство. Поэтому, важно установить эти адреса до подачи питания. В случае изменения адреса устройства, питание системы должно быть сброшено, прежде, чем новый адрес становится достоверным.

ПУСКО-НАЛАДОЧНЫЕ РАБОТЫ
После завершения монтажа оборудования должно быть выполнено приведённое ниже контрольное испытание с тестовым пожаром. До начала испытания требуется 20-30 минутный прогрев извещателя для установления оптического равновесия.

Проверка подачи сигнала “Пожар”
1. Отключить любое оборудование пожаротушения, подсоединенное к системе.
2. Включить напряжение питания системы.
3. Провести проверку функции контроля ж(см. раздел “Магнитный переключатель ж/Ручной режим проверки ж”).
4. Повторно испытание по пунктам 1 - 3 для каждого извещателя в системе. Если извещатель не прошёл испытание успешно, обратиться к разделу “Обнаружение и устранение неисправностей”.
5. Убедиться, что все извещатели в системе правильно ориентированы на защищаемые объекты. Рекомендуется использовать лазерный указатель Q1201С производства компании Детектор Электроникс.
6. По окончании испытаний активировать оборудование пожаротушения.
УСТАНОВКА АДРЕСОВ УСТРОЙСТВ СИСТЕМЫ
(Только для модели EQP)

Общие правила установки адресов
Каждому извещателю на шлейфе LON должен быть присвоен свой собственный адрес. Адреса с 1 по 4 зарезервированы для контроллера системы EQP. Достоверными адресами для полевых устройств являются адреса с 5 по 250.

ВАЖНО
В случае, если на извещателе установлен адрес 0 или старше 250, то система проигнорирует этот адрес.

Установка одинаковых адресов в различных извещателях не выявляется автоматически. Извещатели, которым присвоены одинаковые адреса, будут продолжать поддерживать связь с контроллером, используя тот же самый адрес. Информационное "Слово состояния" будет отображать последнюю информацию, которая могла быть получена от любого из извещателей с одинаковым адресом.

Установка адресов полевых устройств
Адрес LON программируется установкой 8 переключателей в DIP-сборке, находящейся в корпусе извещателя, см. рис. 17. Номер адреса устанавливается в двоичном коде для каждого переключателя, при этом положение первого переключателя соответствует младшему значительному разряду, см. рис. 18. Адрес устройства на шлейфе определяется суммой значений всех замкнутых переключателей. Все "разомкнутые" переключатели игнорируются.

ВНИМАНИЕ!
Для получения доступа к адресным переключателям необходимо вытащить электронный модуль из корпуса извещателя. Открывать корпус допускается, отключив от сети. При проведении работ с извещателем во взрывопасной зоне, в этой зоне должна быть обеспечена взрывобезопасность до начала работ. При разборке извещателя должны всегда соблюдать меры по защите от электростатического разряда.

Оконечное сопротивление шлейфа EOL
(в модели EQP не применяется)
Сопротивление должно устанавливаться таким образом, чтобы тепло, рассеиваемое сопротивлением, не оказывало влияние на изолирующий материал клеммников. Следует соблюдать следующие меры:
1. Номинальная мощность рассеивания оконечного сопротивления должна быть не менее 5 Вт.

ПРИМЕЧАНИЕ
Сопротивление EOL должно быть керамическое, проволочного типа, с допустимой рабочей мощностью рассеивания не более 2,5 Вт.

2. Длина выводов сопротивления должна быть не менее 40 мм.
3. Сопротивление должно быть установлено как показано на рис. 7.
4. Между сопротивлением и поверхностью клеммного блока или любых других соседних элементов должен обеспечиваться минимальный зазор в 10 мм.

ПРИМЕЧАНИЕ
Сопротивление EOL может быть установлено только в корпусе извещателя со взрывозащитой "взрывонепроницаемая оболочка" вида "d". Все неиспользуемые отверстия для кабельных вводов должны быть укомплектованы заглушками с соответствующим видом взрывозащиты.

Рис. 17. Расположение адресных переключателей.

Рис. 7. Пример монтажа оконечного сопротивления EOL.
Рис. 8. Пример схемы подключения извещателя во взрывозащищённом исполнении Exd.

Рис. 9. Пример схемы подключения извещателя во взрывозащищённом исполнении Exde.
Рис. 15. Схема клеммных контактов адресной модели извещателя Х3302.

<table>
<thead>
<tr>
<th></th>
<th>Экран коммуникационного кабеля</th>
<th></th>
<th>Экран коммуникационного кабеля</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>COM 1A</td>
<td>16</td>
<td>COM 2A</td>
</tr>
<tr>
<td>5</td>
<td>COM 1A</td>
<td>15</td>
<td>COM 2A</td>
</tr>
<tr>
<td>4</td>
<td>Экран кабеля питания</td>
<td>14</td>
<td>COM 2A</td>
</tr>
<tr>
<td>3</td>
<td>Экран кабеля питания</td>
<td>13</td>
<td>Экран кабеля питания</td>
</tr>
<tr>
<td>2</td>
<td>+ 24 В Питание</td>
<td>12</td>
<td>+ 24 В Питание</td>
</tr>
<tr>
<td>1</td>
<td>- 24 В Питание</td>
<td>11</td>
<td>- 24 В Питание</td>
</tr>
</tbody>
</table>

Рис. 10. Схема подключения извещателя с неизолированным выходом 0-20 мА (извещатель в качестве источника тока).

Рис. 11. Схема подключения извещателя с неизолированным выходом 0-20 мА (извещатель в качестве потребителя тока).

Примечание 1: Выключатели ручной проверки функции м' могут быть установлены дистанционно или в ПЛК. Выключатели в поставку не входят.
Модель извещателя в адресном исполнении (модель EQP)
Извещатель Х3302 в адресном исполнении применяется в системе пожарной и газовой безопасности EQP (Eagle Quantum Premier).

1. Подсоединить внешние провода к соответствующим клеммам внутри клеммного отсека извещателя, показанного на рис. 14. Обозначения клемм показаны на рис. 15.
2. Соединить экраны жил кабеля питания с земляным наконечником в источнике питания.
3. Соединить экраны жил коммуникационного кабеля с земляной клеммой, как показано на рис. 16.

ПРИМЕЧАНИЕ
Не допускается заземление никаких экранных жил в корпусе извещателя.

4. Установить шлейфный адрес извещателя (см. раздел Установка адресов устройств системы).
5. Проверить правильность подключения всех полевых проводов к извещателю.
6. Установить на место крышку корпуса.
7. Выполнить окончательное ориентирование извещателя и надежно затянуть монтажный кронштейн.

ПРИМЕЧАНИЕ
За информацией по вопросам напряжения питания и требований к коммуникационным кабелям обращаться к руководству по эксплуатации системы пожарной и газовой безопасности EQP, руководство № 95-3533).
Модель извещателя в адресном исполнении (модель EQP)
Извещатель Х3302 в адресном исполнении применяется в системе пожарной и газовой безопасности EQP (Eagle Quantum Premier).

1. Подсоединить внешние провода к соответствующим клеммам внутри клеммного отсека извещателя, показанного на рис. 14. Обозначения клемм показаны на рис. 15.
2. Соединить экранные жилы кабеля питания с земляным наконечником в источнике питания.
3. Соединить экранные жилы коммуникационного кабеля с земляной клеммой, как показано на рис. 16.

ПРИМЕЧАНИЕ
Не допускается заземление никаких экранных жил в корпусе извещателя.

4. Установить шлейфный адрес извещателя (см. раздел Установка адресов устройств системы).
5. Проверить правильность подключения всех полевых проводов к извещателю.
6. Установить на место крышку корпуса.
7. Выполнить окончательное ориентирование извещателя и надежно затянуть монтажный кронштейн.

ПРИМЕЧАНИЕ
За информацией по вопросам напряжения питания и требований к коммуникационным кабелям обращаться к руководству по эксплуатации системы пожарной и газовой безопасности EQP, руководство № 95-3533).
<table>
<thead>
<tr>
<th></th>
<th>Экран коммуникационного кабеля</th>
<th>16 Экран коммуникационного кабеля</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>COM 1A</td>
<td>15 COM 2A</td>
</tr>
<tr>
<td>4</td>
<td>COM 1A</td>
<td>14 COM 2A</td>
</tr>
<tr>
<td>3</td>
<td>Экран кабеля питания</td>
<td>13 Экран кабеля питания</td>
</tr>
<tr>
<td>2</td>
<td>+ 24 В Питание</td>
<td>12 + 24 В Питание</td>
</tr>
<tr>
<td>1</td>
<td>- 24 В Питание</td>
<td>11 - 24 В Питание</td>
</tr>
</tbody>
</table>

Рис. 15. Схема клеммных контактов адресной модели извещателя Х3302.

Рис. 10. Схема подключения извещателя с неизолированным выходом 0-20 мА (извещатель в качестве источника тока).

Рис. 11. Схема подключения извещателя с неизолированным выходом 0-20 мА (извещатель в качестве потребителя тока).

Примечание 1: Выключатели ручной проверки функции могут быть установлены дистанционно или в ПЛК. Выключатели в поставку не входят.
Рис. 8. Пример схемы подключения извещателя во взрывозащищённом исполнении Exd.

Рис. 9. Пример схемы подключения извещателя во взрывозащищённом исполнении Exde.

Примечания:
1. В дежурном режиме работы при отсутствии неисправностей, обмотка реле неисправности находится под напряжением, а его контакты в замкнутом состоянии.
2. В отсутствие режима "Пожар" реле пожара нормально обесточено.
3. Выключатели ручной проверки функции EOL могут быть установлены дистанционно или в ППК. Выключатели в поставку не входят.
4. За детальной информацией об оконечном сопротивлении EOL обращаться в раздел "Технические характеристики".

Примечания:
1. В дежурном режиме работы при отсутствии неисправностей, обмотка реле неисправности находится под напряжением, а его контакты в замкнутом состоянии.
2. В отсутствие режима "Пожар" реле пожара нормально обесточено.
3. Выключатели ручной проверки функции EOL могут быть установлены дистанционно или в ППК. Выключатели в поставку не входят.
4. Оконечное сопротивление EOL устанавливается в ППК.

Рис. 16. Схема типовой системы EQP.
УСТАНОВКА АДРЕСОВ УСТРОЙСТВ СИСТЕМЫ
(Только для модели EQP)

Общие правила установки адресов
Каждому извещателю на шлейфе LON должен быть присвоен свой собственный адрес. Адреса с 1 по 4 зарезервированы для контроллера системы EQP. Достоверными адресами для полевых устройств является адреса с 5 по 250.

ВАЖНО
В случае, если на извещателе установлен адрес 0 или старше 250, то система произнорирует этот адрес.

Установка одинаковых адресов в различных извещателях не выявляется автоматически. Извещатели, которым присвоены одинаковые адреса, будут продолжать поддерживать связь с контроллером, используя тот же самый адрес. Информационное "Слово состояния" будет отображать последнюю информацию, которая могла быть получена от любого из извещателей с одинаковым адресом.

Установка адресов полевых устройств
Адрес LON программируется установкой 8 переключателей в DIP-сборке, находящейся в корпусе извещателя, см. рис. 17. Номер адреса устанавливается в двоичном коде для каждого переключателя, при этом положение первого переключателя соответствует младшему значительному разряду, см. рис. 18. Адрес устройства на шлейфе определяется суммой значений всех замкнутых переключателей. Все "разомкнутые" переключатели игнорируются.

Рис. 17. Расположение адресных переключателей.

ВНИМАНИЕ!
Для получения доступа к адресным переключателям необходимо вытащить электронный модуль из корпуса извещателя. Открывать корпус допускается, отключив от сети. При проведении работ с извещателем во взрывоопасной зоне, в этой зоне должна быть обеспечена взрывобезопасность до начала работ. При разборке извещателя должны всегда соблюдаться меры по защите от электростатического разряда.

Оконечное сопротивление шлейфа EOL
(в модели EQP не применяется)
Сопротивление должно устанавливаться таким образом, чтобы тепло, рассеиваемое сопротивлением, не оказывало влияние на изолирующий материал клеммников. Следует соблюдать следующие меры:
1. Номинальная мощность рассеивания оконечного сопротивления должна быть не менее 5 Вт.

ПРИМЕЧАНИЕ
Сопротивление EOL должно быть керамическое, проволочного типа, с допустимой рабочей мощностью рассеяния не более 2,5 Вт.

2. Длина выводов сопротивления должна быть не менее 40 мм.
3. Сопротивление должно быть установлено как показано на рис. 7.
4. Между сопротивлением и поверхностью клеммного блока или любых других соседних элементов должен обеспечиваться минимальный зазор в 10 мм.

ПРИМЕЧАНИЕ
Сопротивление EOL может быть установлено только в корпусе извещателя со взрывозащитой "взрывонепроницаемая оболочка" вида "d". Все неиспользуемые отверстия для кабельных вводов должны быть укомплектованы заглушками с соответствующим видом взрывозащиты.

Рис. 7. Пример монтажа оконечного сопротивления EOL.
Пример адресации:
Для установки адреса точки № 5 замыкаются переключатели 1 и 3 (двоичные значения 1 + 4); для установки адреса точки № 25 замыкаются переключатели 1, 4 и 5 (двоичные значения 1+8+16).

ВАЖНО
Установленные шлейфные адреса извещателей активируются только после подачи входного напряжения питания на устройство. Поэтому, важно установить эти адреса до подачи питания. В случае изменения адреса устройства, питание системы должно быть сброшено, прежде, чем новый адрес становится достоверным.

Рис. 6. Схема клеммных контактов.

Рис. 18. Адресные переключатели извещателя Х3302

После установки адресов, устройство и соответствующий ему адрес следует зарегистрировать в таблице идентификационных адресов.

ПУСКО-НАЛАДОЧНЫЕ РАБОТЫ

После завершения монтажа оборудования должно быть выполнено приведённое ниже контрольное испытание с тестовым пожаром. До начала испытания требуется 20-30 минутный прогрев извещателя для установления оптического равновесия.

Проверка подачи сигнала "Пожар"
1. Отключить любое оборудование пожаротушения, подсоединённое к системе.
2. Включить напряжение питания системы.
3. Провести проверку функции контроля "т" (см. раздел "Магнитный переключатель "т"").
4. Повторить испытание по пунктам 1 - 3 для каждого извещателя в системе. Если извещатель не прошёл испытание успешно, обратиться к разделу "Обнаружение и устранение неисправностей".
5. Убедиться, что все извещатели в системе правильно ориентированы на защищаемые объекты. Рекомендуется использовать лазерный указатель Q1201C производства компании Детектор Электроникс.
6. По окончании испытаний активировать оборудование пожаротушения.
ОБНАРУЖЕНИЕ И УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

ПРЕДУПРЕЖДЕНИЕ
Электронный блок извещателя не содержит элементов, ремонтных пользователем, и не должен демонтироваться в полевых условиях.

Отыскание неисправностей или демонтаж извещателя надлежит выполнять в следующем порядке:

1. Отключить все оборудование пожаротушения, подключенное к извещателю.
2. Убедиться в отсутствии загрязнений на смотровых окошках. Хотя ИК извещатель относительно нечувствителен к загрязняющим веществам, находящимся в воздухе, тем не менее наледь, грязь или масляные пленки уменьшают его чувствительность. Полная информация, касающаяся очистки линз извещателя приведена в разделе "Техническое обслуживание".
3. Проверить наличие напряжения питания на извещателе.
4. Если система оборудована регистрацией данных, проверить регистр приёмно-контрольного прибора на наличие информации о состоянии реле и выхода 0-20 мА (см. табл. 3)
5. Отключить напряжение питания извещателя и проверить электромонтаж на обрыв.

Внимание: Перед началом проверки отсоединить проводку от извещателя.
6. Если проверка электропроводки и очистка смотровых окошек не устранили состояние неисправности, то следует убедиться в отсутствии высокового фонового ИК-излучения. Это достигается акритеем модуля колпаком или алюминиевой фольгой. Если состояние неисправности исчезает в течение 6 минут, то это обстоятельство подтверждает присутствие фонового ИК-излучения. При этом рекомендуется или переместить извещатель в другое местоположение, или изменить его направленность.

Если ни одна из этих мер не помогает, то извещатель следует вернуть на предприятие-изготовитель для ремонта.

ПРИМЕЧАНИЕ
Желательно всегда иметь запасной извещатель для немедленной замены неисправного устройства и обеспечения непрерывной защиты опасной зоны.

Таблица 3

<table>
<thead>
<tr>
<th>Уровень сигнала (± 0,3 мА)</th>
<th>Состояние извещателя</th>
<th>Меры по устранению неисправности</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 мА</td>
<td>Обрыв цепи</td>
<td>Проверить подводящие провода</td>
</tr>
<tr>
<td>1 мА</td>
<td>Общая неисправность</td>
<td>Перебросить напряжение питания</td>
</tr>
<tr>
<td>2 мА</td>
<td>Неисправность функции 4н</td>
<td>Очистить смотровые окошки</td>
</tr>
<tr>
<td>3 мА</td>
<td>Высокое фоновое ИК-излучение</td>
<td>Устранить источник фонового излучения или изменить место установки извещателя</td>
</tr>
<tr>
<td>4 мА</td>
<td>Дежурный режим работы</td>
<td></td>
</tr>
<tr>
<td>20 мА</td>
<td>Сигнал пожара</td>
<td></td>
</tr>
</tbody>
</table>

Примечания:
1. Если неисправность не устраняется, то извещатель подлежит возврату на предприятие-изготовитель для ремонта.
2. См. раздел "Техническое обслуживание".
Использование экранированных кабелей для защиты от электromагнитных и радиочастотных помех. При использовании экранированных кабелей, экран должен заземляться как показано на рис. 8 по 13, и рис.15. Проконсультируйтесь с предприятием-изготовителем, если экранированный кабель не используется. В тех случаях, когда кабель укладывается в кабельный канал, этот канал не должен использоваться для прокладки проводов другого электрооборудования.

При необходимости иметь возможность отключения напряжения питания следует обеспечить раздельное устройство прерывания питания.

ВНИМАНИЕ!
Установка и электромонтаж извещателя должны выполняться только квалифицированными специалистами.

Установка извещателя
Укрепить монтажный кронштейн извещателя на жёсткой поверхности. Монтажная поверхность не должна испытывать вибрацию и должна быть пригодной для использования крепёжных болтов М9 длиной не менее 25 мм и способной выдерживать вес извещателя с установочным кронштейном. За информацией об установочном кронштейне модели Q9033 обращаться к руководству 95-8686. Габаритные и установочные размеры приведены на рис. 4.

Модели с релейным и аналоговым 0-20 мА выходами
При установке и электромонтаже данных моделей извещателя Х3302 должна соблюдаться следующая процедура:
1. Подсоединить монтажные провода согласно инструкциям данного руководства и национальным нормам.
 - На рис. 5 показаны клеммники, расположенные внутри клеммного отsekа извещателя.
 - На рис. 6 указывается назначение клеммных контактов.
 - На рис. 7 показано подключение охваченного сопротивления шлейфа EQL внутри клеммного отsekа извещателя (см. раздел "Охваченное сопротивление шлейфа").
 - На рис. 8 и 9 приведены примеры подключения извещателя к прямым-контрольным приборам (ППК).
 - На рис. 10 по 13 приведены примеры подключения извещателя с аналоговым выходом 0-20 мА.
2. Убедиться в правильной разводке всех подводящих проводов.

ПРЕДУПРЕЖДЕНИЕ
Не используйте мегометр для проверки привильности монтажа. Извещатель следует отсоединить перед проверкой правильности проводки системы.

3. Развернуть извещатель для правильного ориентирования на объект и закрепить.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

ПЕРIODИЧЕСКИЕ ПРОВЕРКИ
Периодическая проверка взрывонепроницаемой щели не требуется, поскольку извещатель не предназначен для обслуживания в полевых условиях и его конструкция обеспечивает адекватную защиту от воздействий окружающей среды.

ПРЕДУПРЕЖДЕНИЕ
Электронный блок извещателя не содержит элементов, ремонтных пользователем, и не должен разбираться в полевых условиях.

Для поддержания максимальной чувствительности и устойчивости к воздействию ложных тревог, смотровые окошки извещателя должны поддерживаться в чистом состоянии. Процедура очистки окош приведена ниже.

ПРОЦЕДУРА ОЧИСТКИ СМОТРОВЫХ ОКОШЕК

1. Отключить всё оборудование пожаротушения, подключенное к извещателю.
2. Поскольку извещатель Х3302 менее подвержен влиянию загрязняющих веществ, чем другие типы извещателей, снятие рефлектора в некоторых исключительных случаях. Кроме того, не требуется достигать идеальной чистоты, так как поглощение ИК-излучения тонким слоем масляной плёнки и/или налётом соли незначительно. Если после очистки индикация неисправности продолжается, то следует снять и прочистить рефлектор, как указано далее.
3. Независимо от типа окружающей среды, тщательно промойте все три смотровых окошка и поверхности рефлектора с помощью хлопчато-бумажного тампона и очистительной жидкости. При необходимости более сильного очистительного средства используйте изопропиловый спирт.

ВАЖНОЕ
Из-за присутствия в атмосфере корродирующих веществ, отражательная поверхность рефлектора может быть повреждена настолько, что это будет вызывать повторные ошибки в. В таком случае рефлектор должен быть заменён.

СНЯТИЕ И ЗАМЕНА РЕФЛЕКТОРА
Снятие и замена рефлектора выполняются в следующем порядке:
1. Отключить всё оборудование пожаротушения, подключенное к извещателю.
2. Отпустить два невыпадающих винта, затем, удерживая рефлектор за козырёк, снять его с извещателя (см. рис. 19).
3. Установить новый или очищенный рефлектор.

ПРИМЕЧАНИЕ
При установке рефлектора из нержавеющей стали убедитесь в наличие прокладки и её правильной установке, что обеспечивает защиту от влаги и загрязнителей. Равномерная затяжка фиксирующих винтов обеспечивает правильную установку рефлектора.

4. Провести повторную калибровку функции, руководствуясь инструкциями в руководстве по применению программы Inspector Monitor № 95-3581.

ПРЕДУПРЕЖДЕНИЕ
Повторная калибровка функции после замены рефлектора обязательна.

При использовании кабелепроводов, в местах скопления влаги должны быть установлены дренажные устройства для автоматического слива накопившейся воды. Для обеспечения вентиляции конденсата в верхних точках прогонов должны устанавливаться сапуны кабелепроводов. Рекомендуется применять, по крайней мере, один сапун в комплекте с каждым дренажным устройством.

При установке уплотнителей кабелепроводов потребуется выполнение требований взрывозащищенности. В извещателях с метрической резьбой кабельных вводов между кабелепроводом и кабельным вводом должна устанавливаться шайба для обеспечения степени защиты оболочки IP66 или адаптер с уплотнительной прокладкой.

Рефлекторы извещателя
Извещатель Х3302 поставляется с рефлекторами из черной пластмассы или нержавеющей стали. Эти рефлекторы не взаимозаменяемы. При заказе сменных рефлекторов необходимо учитывать материал рефлекторов, подлежащих замене.

Рис. 19. Снятие рефлектора.

Остёгните два невыпадающих винта
Удалите рефлектор, удерживаю его за козырёк

При электромонтаже системы должны соблюдаться национальные правила и нормы. Сечение проводов выбирается в зависимости от количества извещателей в системе, напряжению питания в электросети и длины кабеля. Обычно используются экранированные провода сечением 2,5 мм². Длина снимаемой изоляции с концов монтажных проводов 9 мм. На клеммах извещателя Х3302 должно обеспечиваться напряжение питания не менее 18 В.

ПРИМЕЧАНИЕ
Информация о потребляемой мощности приводится в разделе Технические характеристики.
Рис. 2. Установка извещателя по отношению к горизонтальной плоскости

ОРИЕНТАЦИЯ ИЗВЕЩАТЕЛЯ

На рис. 3 указано правильное положение рефлектора \(\bullet \) после установки и ориентации извещателя. Это обеспечит правильную работу целей \(\bullet \) и уменьшит скопление влаги и загрязнителей между рефлектором \(\bullet \) и смотровыми окошками.

На рефлекторе имеется рельефная стрелка, которая должна быть направлена вверх в подтверждение правильной ориентации извещателя.

ВАЖНОЕ ЗАМЕЧАНИЕ

Рефлектор \(\bullet \) извещателя должен быть надежно зафиксирован для правильного функционирования целей \(\bullet \) (рекомендуемое усилие затяжки винтов – 0,02881 кг-м).

ОБЕСПЕЧЕНИЕ ВЛАГОЗАЩИЩЕННОСТИ

Во время монтажных работ важно принять меры, чтобы не допустить попадание влаги в электрические соединения или компоненты системы. Обеспечение влагозащиты необходимо для сохранения работоспособности системы в эксплуатации, при этом ответственность за выполнение этих мер лежит на монтажно-наладочной организации.

Процедура периодической проверки

Для обеспечения правильной работы системы, она должна регулярно проверяться на плановой основе с использованием ручной функции \(\bullet \) или магнитного переключателя. Тестирование системы следует проводить как описывается в разделе "Проверка подачи сигнала пожара". Если извещатель не срабатывает должным образом, обращайтесь к разделу "Обнаружение и устранение неисправностей".

Энергопитание счётчика времени

(В adresной модели извещателя счётчик не используется)

В качестве резервного источника энергопитания для пожарного счёта времени используется литиевая батарейка, способная обеспечить работу таймера в течение 10 лет. Тем не менее, рекомендуется заменить батарейку каждые 7 лет. Проконсультируйтесь с предприятием-изготовителем в отношении замены батарейки.

ПРИМЕЧАНИЕ

Если батарейка резервного источника полностью разряжается, это не повлияет на работу извещателя. Однако, это может повлиять на отметку времени и даты в журнале событий.

Запасные части

Извещатель Х3302 не предназначен для ремонта пользователем в процессе эксплуатации. При возникновении проблем, следует обратиться к разделу "Обнаружение и устранение неисправностей". Если определено, что проблема вызвана дефектом извещателя, то он должен быть возвращён на предприятие-изготовитель для ремонта.

Ремонт и возврат устроства

Перед возвратом извещателя свяжитесь с ближайшим отделением фирмы Детектор Электроникс для присвоения номера заявки на обслуживание (Service Order number). К возвращаемому устройству или детали необходимо приложить письменное заявление с описанием неисправности, чтобы ускорить обнаружение причин повреждения и, таким образом, сократить для пользователя затраты по времени и стоимости ремонта.

Правильно упакуйте устройство или деталь, используя достаточное количество упаковочного и антистатического материала. При возврате оборудование следует направлять с предоплатой транспортировки по адресу предприятия в г. Миннеаполис:

Detector Electronics Corporation
6901 West 110th Street
Minneapolis, Minnesota 55438 USA
Telephone (952) 941-5665 or (800) 765-FIRE
Информация для заказа

При выборе извещателя Х3302 руководствуйтесь матрицей исполнений, приведённой ниже:

<table>
<thead>
<tr>
<th>Модель</th>
<th>Наименование</th>
</tr>
</thead>
<tbody>
<tr>
<td>Х3302</td>
<td>Извещатель пожарный пламени ИК</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Тип</th>
<th>Материал корпуса</th>
</tr>
</thead>
<tbody>
<tr>
<td>А</td>
<td>Алюминиевый</td>
</tr>
<tr>
<td>С</td>
<td>Стальной из нержавеющей стали</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Резьба отверстий кабелевводов</th>
<th>4M</th>
<th>4-портовый, М25</th>
</tr>
</thead>
<tbody>
<tr>
<td>4N</td>
<td>4-портовый, 3/4 дюйма NPT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Тип</th>
<th>Выходной сигнал</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Релейный</td>
</tr>
<tr>
<td>13</td>
<td>Релейный и 4 – 20 мА</td>
</tr>
<tr>
<td>14</td>
<td>Адресный (модель EQR)</td>
</tr>
<tr>
<td>15</td>
<td>Релейный и импульсный</td>
</tr>
<tr>
<td>23</td>
<td>HART, релейный и 4 – 20 мА</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Сертификация</th>
</tr>
</thead>
<tbody>
<tr>
<td>R Российская</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Вид взрывозащиты</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вид Exde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Вид Exd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Установочные и электромонтажные работы

Расположение извещателя

Извещатели должны размещаться таким образом, чтобы обеспечить наилучший беспрепятственный обзор охраняемой зоны. Следует принять во внимание следующие факторы:

- Определение наиболее возможных источников загораний.
- Уверенность, что для адекватной защиты контролируемой зоны используется достаточное количество извещателей.
- Обеспечение лёгкого доступа к извещателю для проведения работ по периодическому обслуживанию.
- Расположение и нацеливание извещателя должно быть произведено с учетом расстояния обнаружения и угла обзора извещателя. Более подробная информация приводится в приложении.
- Многоспектральные извещатели ИК диапазона менее подвержены ложному срабатыванию от безпламенных источников ИК-излучения, чем другие типы извещателей (см. таблицу Устойчивость к воздействию источников ложных тревог в приложении). Тем не менее, в некоторых случаях продолжительная модуляция сигналов таких источников вызовет ослабление чувствительности извещателя, проявляющееся в уменьшении расстояния обнаружения пожара (см. приложение). В связи с этим, при установке извещателя Х3302 необходимо избегать таких источников, если возможна длительная и частая модуляция ИК излучения, создаваемая приведёнными примерами.
- Извещатель должен быть нацелен на объект по нисходящей под углом, по крайней мере, 10 - 20 градусов, см. рис. 2. Такая установка предотвращает скопление влаги на линзах. Угол обзора извещателя не должен охватывать территорию за пределами опасной зоны, что позволит значительно уменьшить влияние потенциальных источников ложных тревог, находящихся за пределами этой зоны.
- Для получения наилучших показателей работы, извещатель должен монтироваться на жесткой, не подверженной вибрации поверхности.
- Сильный туман, дождь или наледь поглощают ИК-излучение и ухудшают характеристики чувствительности извещателя.
- Хотя извещатели ИК диапазона менее подвержены влиянию дыма на их характеристиках, извещатель Х3302 не должен размещаться в местах возможного потока продуктов горения, способных ограничить видимость. Если ожидается скопление дыма до появления открытого пламени, то совместно с извещателем должны применяться дымовые или тепловые датчики. При применении извещателя в помещениях, где скопление плотного дыма может предшествовать появлению пламени, он должен монтироваться на стене на высоте примерно 1 м от потолка.
- Там, где это возможно, желательно проведение тестовых пожаров, для определения правильного расположения извещателей и охватываемой ими контролируемой зоны.
УКАЗАНИЕ МЕР ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ

ПРЕДУПРЕЖДЕНИЕ
Не разрешается открывать извещатель во взрывоопасной среде при включённом напряжении питания. В извещателе имеется ограниченное количество подлежащих регулировке или замене компонентов, поэтому извещатель не следует открывать даже в обычной среде. Попытка открыть электронный блок может привести к нарушению уставки оптических узлов и калибровочных параметров, и, возможно, к серьезным повреждениям. Такие повреждения могут остаться в начале незаметными, но в дальнейшем привести к отказу в обнаружении пожара или к ложному срабатыванию.

ПРЕДУПРЕЖДЕНИЕ
Процедура электромонтажа, указанная в данном руководстве, обеспечивает гарантию правильного функционирования аппарата в нормальных условиях. Тем не менее, из-за наличия многочисленных национальных норм и правил электромонтажа, невозможно гарантировать полное соответствие этим предписаниям. В случае сомнений, перед началом работ проконсультируйтесь с компетентными и официальными организациями.

Электромонтаж и установка извещателя должны выполняться только квалифицированными специалистами.

ПРЕДУПРЕЖДЕНИЕ
Во время тестирования или технического обслуживания, система пожаротушения должна быть отключена во избежание нежелательной активации пожаротушения или подачи сигнала "Пожар".

ПРЕДУПРЕЖДЕНИЕ
Извещатели X3302 должны устанавливаться в местах с наименьшим риском механического повреждения.

ВНИМАНИЕ!
Снимите защитный колпак смотровых окошек извещателя перед пуском системы обнаружения пожара.

ВНИМАНИЕ!
Соблюдайте правила обращения с устройствами, чувствительными к электростатическим разрядам.

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ И РАСХОДНЫЕ МАТЕРИАЛЫ

<table>
<thead>
<tr>
<th>Каталоговый номер</th>
<th>Название</th>
</tr>
</thead>
<tbody>
<tr>
<td>000511-029</td>
<td>Преобразователь интерфейсный RS485 в RS232</td>
</tr>
<tr>
<td>103881-001</td>
<td>Преобразователь интерфейсный RS485 в USB</td>
</tr>
<tr>
<td>007819-001</td>
<td>Программа инспекционного контроля извещателей "Inspector Monitor" W6300B1002 на компактном диске с разъёмом подключения последовательной связи</td>
</tr>
<tr>
<td>007819-002</td>
<td>Программа инспекционного контроля извещателей "Inspector Monitor" W6300B1003 на компактном диске с разъёмом подключения USB</td>
</tr>
<tr>
<td>009207-001</td>
<td>Программа инспекционного контроля извещателей "Inspector Monitor" на компактном диске</td>
</tr>
<tr>
<td>103922-001</td>
<td>Коммутатор HART 475</td>
</tr>
<tr>
<td>102740-002</td>
<td>Магнит калибровочный</td>
</tr>
<tr>
<td>008082-001</td>
<td>Магнит калибровочный с переходником для крепления на телескопической штанге</td>
</tr>
<tr>
<td>007739-001</td>
<td>Магнит калибровочный с телескопической штанге</td>
</tr>
<tr>
<td>007240-001</td>
<td>Экран воздушный алюминиевый, модель Q1116А1001</td>
</tr>
<tr>
<td>007818-001</td>
<td>Экран воздушный фланцевый алюминиевый, модель Q1118А1001</td>
</tr>
<tr>
<td>007818-002</td>
<td>Экран воздушный фланцевый из нерж. стали, модель Q1118С1001</td>
</tr>
<tr>
<td>009177-001</td>
<td>Кольцо крепления краскопокрашенного экрана алюминиевое, модель Q1120А1001</td>
</tr>
<tr>
<td>009178-001</td>
<td>Кронштейн монтажный фланцевый, модель Q1130А1001</td>
</tr>
<tr>
<td>006097-001</td>
<td>Лазерный указатель Q1201</td>
</tr>
<tr>
<td>102871-001</td>
<td>Батарейка 3 В литиевая для лазерного указателя</td>
</tr>
<tr>
<td>007255-001</td>
<td>Держатель для лазерного указателя при использовании с извещателями Х-серии, модель Q1201С1001</td>
</tr>
<tr>
<td>007338-001</td>
<td>Ограничитель угла обзора на 10° алюминиевый для извещателей Х3301/Х3302, модель Q2033A10R</td>
</tr>
<tr>
<td>007338-020</td>
<td>Ограничитель угла обзора на 20° алюминиевый для извещателей Х3301/Х3302, модель Q2033A20R</td>
</tr>
<tr>
<td>007338-030</td>
<td>Ограничитель угла обзора на 30° алюминиевый для извещателей Х3301/Х3302, модель Q2033A30R</td>
</tr>
<tr>
<td>007912-010</td>
<td>Пластинка блокировочная для ограничителя угла обзора на 10°, запасная, алюминиевая</td>
</tr>
<tr>
<td>007912-020</td>
<td>Пластинка блокировочная для ограничителя угла обзора на 20°, запасная, алюминиевая</td>
</tr>
<tr>
<td>007912-030</td>
<td>Пластинка блокировочная для ограничителя угла обзора на 30°, запасная, алюминиевая</td>
</tr>
</tbody>
</table>
ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ И РАСХОДНЫЕ МАТЕРИАЛЫ, продолжение

007290-001	Кронштейн настенный для извещателей с алюминиевым или стальным корпусом, модель 9803ЗВ
007290-002	Кронштейн монтажный алюминиевый (для извещателей с алюминиевым корпусом), модель 9803ЗА
011385-001	Крепёжный хомут Q653
101197-001	Заглушка отверстия кабельного ввода 3/4 дюйма, алюминиевая
101197-004	Заглушка отверстия кабельного ввода 3/4 дюйма, нерж. сталь
101197-005	Заглушка отверстия кабельного ввода М25, алюминиевая, IP66
101197-003	Заглушка отверстия кабельного ввода М25, нерж. сталь, IP66
010816-001	Заглушка отверстия кабельного ввода М25, нерж. сталь, IP66 (упаковка 20 шт.)
010817-001	Заглушка отверстия кабельного ввода М25, алюминиевая, (упаковка 20 шт.)
010818-001	Заглушка отверстия кабельного ввода М25, нерж. сталь, IP66, (упаковка 20 шт.)
010819-001	Заглушка отверстия кабельного ввода М25, нерж. сталь, IP66, (упаковка 20 шт.)
103633-001	Ключ торцовой на 14 мм
103406-001	Отвёртка
107427-040	Уплотнительное кольцо O-тип для задней крышки корпуса
005003-001	Смазка безкремниевая, упаковка 29 гр
001680-003	Очиститель для окошек (упаковка из 6 бутылок)
009208-002	Набор сменных рефлекторов для извещателя Х3302 (5 рефлекторных пластин чёрного цвета), включает в себя тестовый разъём и программу "Inspector Monitor"
010831-002	Набор сменных рефлекторов для извещателя Х3302 (5 рефлекторных пластин из нерж. стали), включает в себя тестовый разъём и программу "Inspector Monitor"
007307-003	Рефлектор для извещателя Х3302 с рефлекторной пластиной чёрного цвета (требуется тестовый разъём для калибровки)
010830-002	Рефлектор для извещателя Х3302 с рефлекторной пластиной из нерж. стали (требуется тестовый разъём для калибровки)

СМЕННЫЕ КОМПЛЕКТУЮЩИЕ

009208-003	Набор сменных рефлекторов для извещателя Х3302 (5 рефлекторных пластин чёрного цвета), включает в себя тестовый разъём и программу "Inspector Monitor"
010831-002	Набор сменных рефлекторов для извещателя Х3302 (5 рефлекторных пластин из нерж. стали), включает в себя тестовый разъём и программу "Inspector Monitor"
007307-003	Рефлектор для извещателя Х3302 с рефлекторной пластиной чёрного цвета (требуется тестовый разъём для калибровки)
010830-002	Рефлектор для извещателя Х3302 с рефлекторной пластиной из нерж. стали (требуется тестовый разъём для калибровки)

За консультацией при выборе и заказе системы для конкретной области применения обращаться в группу поддержки фирмы Дет-Троникс по адресу:
Detector Electronics Corporation
Field Support Group
6901 West 110th Street
Minneapolis, Minnesota 55438 USA.
Telephone (952) 941-5665 or (800) 765-FIRE
Facsimile (952) 829-8750

РЕГИСТРАЦИЯ ДАННЫХ
В извещателе Х3302 предусмотрена возможность регистрации событий. Регистрируются такие события, как дежурный режим работы, отключение напряжения питания, общая неисправность и неисправность оптических цепей, предварительная тревога, реальное время и температура. Каждое событие имеет отметку времени и даты, температуры и величины входного напряжения. Данные о событии заносятся в энергонезависимую память в момент активации события, а затем при изменении состояния извещателя. Доступ к данным производится через интерфейсный порт RS-485 или через контроллер системы EOP.

ОБЩАЯ ИНФОРМАЦИЯ ПО ПРИМЕНЕНИЮ

ХАРАКТЕРИСТИКИ ЧУВСТВИТЕЛЬНОСТИ ИЗВЕЩАТЕЛЯ
Чувствительность зависит от расстояния до источника пламени, типа источника загорания, температуры топлива и времени, требуемого для установления теплового равновесия пламени. Как и при проведении любых огненчатых испытаний, результаты должны интерпретироваться в соответствии с конкретным применением.

ВАЖНЫЕ ЗАМЕЧАНИЯ ПО ПРИМЕНЕНИЮ
При использовании любого типа чувствительного устройства в качестве извещателя пламени, важно учитывать любые условия, способные предотвратить отклик этого устройства на пожар, а также другие источники, кроме пламени, способные вызвать срабатывание извещателя.

Сварка
Электродуговая сварка не должна выполняться ближе 6 м от высокочувствительного извещателя, 5 м от извещателя с высокой чувствительностью, 3 м от извещателя с средней чувствительностью и 1,5 м от извещателя с низкой чувствительностью. Причиной могут быть электромагнитные помехи, вызванные сварочным процессом. Сварка может привести к срабатыванию извещателя. Сварочные работы с глинистыми связующими материалами не возгораются и не вызывают помехоустойчивость, а также другие источники, кроме пламени, способные вызвать срабатывание извещателя.

Особенности пожаротушения
Извещатель Х3302 должен располагаться в книге, где есть опасность возгорания, но не должен располагаться ближе, чем 0,61 м от источников дополнительного освещения. Эти источники могут вызвать дополнительный нагрев извещателя за счет излучающего им тепла.

Пожароопасность
Извещатель Х3302 устойчив к воздействию электромагнитных и радиочастотных помех и удовлетворяет требованиям стандартов к ЭМП. Извещатель не реагирует на сигнал от переговорного устройства, удалённого на расстояние 30 см.

Источники угроз огнестойких пожаров
Извещатель Х3302 предназначен для обнаружения источников загораний, выделяющих водород в качестве продуктов горения. К таким источникам относятся водород, аммиак, аммиак, аммиак, аммиак и другие горючие газы. Эти извещатели могут быть устроены для горючих газов и других пожароопасных веществ в помещении. Извещатель Х3302 может работать при температуре окружающей среды от -20 до +70 °C и относительной влажности до 95% при температуре окружающей среды 40 °C.
Магнитный переключатель или Ручной режим проверки

Тестирование извещателя может также осуществляться с помощью магнитного переключателя (геркона) или методом ручной проверки, которые выполняют ту же задачу, что и автоматическая функция, в дополнение, активируют реле пожара для проверки работоспособности в соответствии с требованиями профилактического обслуживания. Эти процедуры могут выполняться в любое время и также не требуют использования внешней тестовой лампы.

ПРЕДУПРЕЖДЕНИЕ

Указанные тестовые испытания должны производиться при отключённой системе пожаротушения.

Тестирование с помощью магнитного переключателя выполняется размещением магнита в обозначенном месте (MAG 46) на корпусе извещателя. Ручной метод тестирования обеспечивается закорачиванием контакта (MAN 46, клемма 22) на отрицательный полюс источника питания с помощью внешнего выключателя. Для выполнения цикла проверки магнит или внешний выключатель должны удерживаться в указанном положении не менее 6 секунд. Любой из этих методов активирует эмиттеры внутреннего источника ИК-излучения.

Если результирующий сигнал соответствует тестовым критериям, указывая, что извещатель сохраняет более половины диапазона обнаружения, то тогда реле пожара изменяет своё состояние. Если тестовый критерий указывает на то, что остаётся менее половины диапазона обнаружения, то оно обесточивается и светодиод загорается красным светом. При этом уровень выходного сигнала достигает величины 20 мА. Это состояние извещателя сохраняется до тех пор, пока не удаляется магнит или внешний выключатель.

Если реле пожара запрограммировано на работу в режиме без фиксации, то оно обесточивается и светодиод загорается зелёным светом. Если реле пожара запрограммировано на работу в режиме без фиксации, то оно обесточивается и светодиод загорается зелёным светом. Если реле пожара запрограммировано на работу в режиме без фиксации, то оно обесточивается и светодиод загорается зелёным светом.

Если результирующий сигнал соответствует тестовым критериям, указывая, что извещатель сохраняет более половины диапазона обнаружения, то тогда реле пожара изменяет своё состояние и светодиод индикации загорается красным светом. При этом уровень выходного сигнала достигает величины 20 мА. Это состояние извещателя сохраняется до тех пор, пока не удаляется магнит или внешний выключатель. Для выполнения цикла проверки магнит или внешний выключатель должны удерживаться в указанном положении не менее 6 секунд. Любой из этих методов активирует эмиттеры внутреннего источника ИК-излучения.

Если результирующий сигнал соответствует тестовым критериям, указывая, что извещатель сохраняет более половины диапазона обнаружения, то тогда реле пожара изменяет своё состояние и светодиод индикации загорается красным светом. При этом уровень выходного сигнала достигает величины 20 мА. Это состояние извещателя сохраняется до тех пор, пока не удаляется магнит или внешний выключатель.

ВПРИМЕЧАНИЕ

Характеристики извещателя и работа функции подтверждены американским органом по сертификации FM Approvals, см. приложение к данному руководству.

КОММУНИКАЦИОННАЯ СВЯЗЬ

Для передачи данных о своём состоянии и другой информации внешним устройствам в извещателе Х330 используется последовательный интерфейс RS-485. Интерфейс RS-485 поддерживает протокол MODBUS с извещателем, сконфигурированным как управляющее устройство. Для работы с протоколом HART в цепи 0-20 мА требуется установка сопротивления 250 Ом.

ПРИМЕЧАНИЕ

Модель EQP использует коммуникационную связь LON. Интерфейсы RS-485 и HART в данной модели отсутствуют.

КЛЕМНЫЙ ОТСЕК

Все внешние кабели подводятся к извещателю через внутренний клеммный отсек, являющийся составной частью корпуса извещателя. В корпусе предусмотрены четыре отверстия с резьбой M25 или 3/4 дюйма под кабельные вводы.
Характеристики, подтвержденные американским органом по сертификации FM Approvals

Низкая чувствительность

<table>
<thead>
<tr>
<th>Тестовый очаг</th>
<th>Размер очага (м) / Расход (сл/м²)</th>
<th>Расстояние до очага (м)</th>
<th>Время отклика типовое, (с)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Водород</td>
<td>Факел 0,61 / 100</td>
<td>7,6</td>
<td>3</td>
</tr>
<tr>
<td>Метанол</td>
<td>0,3 х 0,3</td>
<td>5,3</td>
<td>3</td>
</tr>
</tbody>
</table>

* сл/м² – Стандартный литр в минуту, определяется стандартными условиями Tamb=25°C и атмосферным давлением в 1атм (14,696 psi)

** Для модели EQP ко времени отклика добавляются 2 секунды.

Адресный выход (модель EQP)

Модель EQP разработана для применения исключительно с системой пожарной и газовой безопасности Eagle Quantum Premier компании Дет-Троникс. Извещатель обменивается информацией с системным контроллером через локальную операционную сеть LON (шлейф связи). Сеть LON представляет собой отказоустойчивую двухпроводную цифровую коммуникационную сеть, организованную по кольцевому шлейфу. Аналоговый и релейные выходы в данной модели отсутствуют.

СВЕТОДИОДНЫЙ ИНДИКАТОР СОСТОЯНИЙ

3-х цветный светодиод на фронтальной плоскости извещателя выполняет роль индикатора нормального режима работы и оповещает персонал о состояниях пожарной тревоги или неисправности. Соответствие индикации светодиода режимам извещателя приведены в таблице 2.

Таблица 2

<table>
<thead>
<tr>
<th>Состояние извещателя</th>
<th>Свечение светодиода</th>
</tr>
</thead>
<tbody>
<tr>
<td>Напряжение питания включено, дежурный режим работы (сигналы неисправности или пожара отсутствуют)</td>
<td>Зелёное</td>
</tr>
<tr>
<td>Неисправность</td>
<td>Жёлтое</td>
</tr>
<tr>
<td>Пожар (тревога)</td>
<td>Красное</td>
</tr>
<tr>
<td>Низкая чувствительность</td>
<td>Одна вспышка жёлтого цвета при включении напряжения питания</td>
</tr>
<tr>
<td>Средняя чувствительность</td>
<td>Две вспышки жёлтого цвета при включении напряжения питания</td>
</tr>
<tr>
<td>Высокая чувствительность</td>
<td>Три вспышки жёлтого цвета при включении напряжения питания</td>
</tr>
<tr>
<td>Очень высокая чувствительность</td>
<td>Четыре вспышки жёлтого цвета при включении напряжения питания</td>
</tr>
</tbody>
</table>

ОПИСАНИЕ ТЕСТИРОВАНИЯ ОПТИКИ - ФУНКЦИЯ ө1

Автоматический режим проверки ө1

В извещателе Х3302 используется автоматическая функция контроля оптики ө1, которая автоматически выполняет ежеминутную калиброванную проверку правильного функционирования извещателя. При этом использование внешнего контрольного источника ИК-излучения (тестовой лампы) не требуется. Успешное выполнение автоматической проверки не вызывает перехода в режим ‘Пожар’.

Сигнал неисправности вырабатывается при падении чувствительности до уровня, при котором расстояние обнаружения уменьшается примерно на 50%. При этом включается реле неисправности и светодиод индикации загорается жёлтым светом. За детальной информацией обращайтесь в раздел “Обнаружение неисправностей и методы их устранения”.

40 95-3576 13 95-3576
Выходные сигналы

Релейный
Контакты каждого реле стандартной модели извещателя обеспечивают коммутацию тока до 5А при напряжении постоянного тока до 30 В и резистивной нагрузке. Реле пожара имеет нормально разомкнутый и нормально замкнутый контакты, и дублирующие входные/выходные клеммы. При отсутствии сигнала пожара реле пожара находится в обесточенном состоянии и может работать в режимах с фиксацией или без неё. Реле неисправности также имеет дублирующие входные/выходные клеммы и нормально разомкнутые контакты. Это реле в нормальном режиме находится под напряжением питания и может работать в режимах с фиксацией или без неё. Вспомогательное реле имеет нормально разомкнутый и нормально замкнутый контакты и может программироваться для двух состояний – обесточено или под напряжением питания. Реле также может работать в режиме с фиксацией или без неё.

Аналоговый выход 0-20 мА
Данный вариант возможен в дополнение к трёхрелейной модели. Выходной сигнал 0 – 20 мА пост. тока служит для передачи информации о состоянии извещателя другим контрольным устройствам. Выходная цепь может быть подсоединена по изолированной или неизолированной схеме и может быть нагружена на максимальное сопротивление шлейфа 500 Ом при напряжении питания от 18 до 30 В пост. тока. Соответствие величины токового сигнала различным состояниям извещателя приведено в таблице 1. Этот выход калируется на предприятии-изготовителе и не нуждается в повторной калибровке в условиях эксплуатации.

ПРИМЕЧАНИЕ
Аналоговый счётчик токовой цепи 0-20 мА не контролируется схемой обнаружения неисправностей извещателя. Следовательно, обрыв токовой цепи не вызывает срабатывания реле неисправности или изменения индикации светоимпульса. Индикация светоимпульса всегда соответствует состоянию релейного выхода.

Индикация состояний извещателя

<table>
<thead>
<tr>
<th>Уровень сигнала (±0,3 мА)</th>
<th>Состояние извещателя</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 мА</td>
<td>Неисправность источника питания</td>
</tr>
<tr>
<td>1 мА</td>
<td>Общая неисправность</td>
</tr>
<tr>
<td>2 мА</td>
<td>Неисправность функции</td>
</tr>
<tr>
<td>3 мА</td>
<td>Высокое фоновое ИК – излучение</td>
</tr>
<tr>
<td>4 мА</td>
<td>Дежурный (нормальный) режим работы</td>
</tr>
<tr>
<td>20 мА</td>
<td>Сигнал пожара</td>
</tr>
</tbody>
</table>

Режим пожара имеет приоритет по отношению к состоянию неисправности, за исключением, когда неисправность приводит подаче извещателем сигнала пожарной тревоги, как, например, при потере напряжения питания.

ВРЕМЯ ОТКЛИКА В ЗАВИСИМОСТИ ОТ УГЛА ОБЗОРА И ЧУВСТВИТЕЛЬНОСТИ

Очень высокая чувствительность

Таблица 1

<table>
<thead>
<tr>
<th>Тестовый очаг</th>
<th>Размер очага (м) / Расход (сл/м²)</th>
<th>Расстояние до очага (м)</th>
<th>Горизонтальная плоскость</th>
<th>Вертикальная плоскость</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Угол обзора</td>
<td>Время отклика типовое, (с)**</td>
</tr>
<tr>
<td>Водород</td>
<td>Факел 0,61 / 100</td>
<td>30,5</td>
<td>+45</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+45</td>
<td>8</td>
</tr>
<tr>
<td>Метанол</td>
<td>0,3 x 0,3</td>
<td>21,3</td>
<td>+45</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+45</td>
<td>6</td>
</tr>
</tbody>
</table>

Высокая чувствительность

Таблица 1

<table>
<thead>
<tr>
<th>Тестовый очаг</th>
<th>Размер очага (м) / Расход (сл/м²)</th>
<th>Расстояние до очага (м)</th>
<th>Горизонтальная плоскость</th>
<th>Вертикальная плоскость</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Угол обзора</td>
<td>Время отклика типовое, (с)**</td>
</tr>
<tr>
<td>Водород</td>
<td>Факел 0,61 / 100</td>
<td>22,9</td>
<td>+45</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+45</td>
<td>3</td>
</tr>
<tr>
<td>Метанол</td>
<td>0,3 x 0,3</td>
<td>16</td>
<td>+45</td>
<td>4,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+45</td>
<td>3,5</td>
</tr>
</tbody>
</table>

Средняя чувствительность

Таблица 1

<table>
<thead>
<tr>
<th>Тестовый очаг</th>
<th>Размер очага (м) / Расход (сл/м²)</th>
<th>Расстояние до очага (м)</th>
<th>Горизонтальная плоскость</th>
<th>Вертикальная плоскость</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Угол обзора</td>
<td>Время отклика типовое, (с)**</td>
</tr>
<tr>
<td>Водород</td>
<td>Факел 0,61 / 100</td>
<td>15,2</td>
<td>+45</td>
<td>4,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+45</td>
<td>3,5</td>
</tr>
<tr>
<td>Метанол</td>
<td>0,3 x 0,3</td>
<td>10,7</td>
<td>+45</td>
<td>9,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+45</td>
<td>6</td>
</tr>
</tbody>
</table>

* sl/m² – Стандартный литр в минуту, определяется стандартными условиями Tamb=25°C и атмосферным давлением в 1атм (14,696 psi)
** Для модели ЕОП ко времени отклика добавляется 2 секунды.
Характеристики, подтверждённые американским органом по сертификации FM Approvals

Низкая чувствительность

<table>
<thead>
<tr>
<th>Тестовый очаг</th>
<th>Размер очага (м) / Расход (л/см²)</th>
<th>Расстояние до очага (м)</th>
<th>Горизонтальная плоскость</th>
<th>Вертикальная плоскость</th>
<th>Угол обзора</th>
<th>Время отклика типовое, (с)**</th>
<th>Угол обзора</th>
<th>Время отклика типовое, (с)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Водород</td>
<td>0,61 / 100</td>
<td>7,6</td>
<td>+45</td>
<td>2</td>
<td>-45</td>
<td>2,5</td>
<td>+45</td>
<td>-30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Метанол</td>
<td>0,3 х 0,3</td>
<td>5,3</td>
<td>+45</td>
<td>7</td>
<td>-45</td>
<td>8,5</td>
<td>+45</td>
<td>-30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
* сл/м² – Стандартный литр в минуту, определяется стандартными условиями Tamb=25°C и атмосферным давлением в 1 атм (14,696 psi)
** Для модели EQP ко времени отклика добавляются 2 секунды.

УСТРОЙСТВО И ОПИСАНИЕ РАБОТЫ

Модель Х3302 представляет собой извещатель пламени инфракрасного (ИК) диапазона, выполняющий трудную задачу обнаружения невидимых очагов пожаров, вызванных горением водорода. Работа извещателя Х3302 основана на анализе инфракрасного излучения при образовании водяного пара в качестве продукта горения водорода, выполняемого в условиях ограниченного диапазона обнаружения. В процессе анализа используется подтверждённая в эксплуатации мультиспектральная инфракрасная технология (MIR), позволяющая значительно снижать количество ложных срабатываний. В результате, применение извещателя Х3302, обладающего непревзойдённой чувствительностью и распознаванием источников не открытого пламени, возможно там, где традиционные извещатели пламени неприемлемы.

Использование запатентованных алгоритмов обработки сигнала извещателя модели Х3301 применительно к модели Х3302 обеспечивает значительный шаг вперёд в обнаружении пожаров/наблюдении за взрывоопасными материалами, которые в процессе горения выделяют в основном водяные пары и совсем не выделяют, или выделяют незначительное количество, двуокиси углерода.

При использовании извещателя Х3302 возможности обнаружения удвоены по сравнению с традиционными извещателями УФ и УФ/ИК диапазонов. В тоже время, извещатель невосприимчив к солнечному излучению и искусственному освещению, молнии и излучению "чёрного тела", которым до сих пор подвержены другие технологии, используемые для обнаружения пожаров.

Извещатель выполнен в соответствии с требованиями, предъявляемыми к взрывозащищённому оборудованию группы II по ГОСТ Р 51330.0, -1, -8 и -17, и предназначен для применения во взрывоопасных зонах внутри и вне помещений.

Стандартная конфигурация извещателя Х3302 включает в себя реле пожара, реле неисправности и вспомогательное реле. Возможны также следующие выходы:
- аналоговый 0-20 мА (совместно с тремя релейными выходами);
- импульсный, совместимый для работы в существующих системах с использованием контроллеров (имеются реле пожара и неисправности);
- адресный для работы в системе EQP (Eagle Quantum Premier). В данной модели релейный и аналоговый выходы отсутствуют;
- коммуникационный для работы с HART-коммуникатором.

3-х цветный светодиод на фронтальной плоскости извещателя выполняет роль индикатора нормального режима работы, реле неисправности и вспомогательное реле. Возможны также следующие выходы:
- аналоговый 0-20 мА (совместно с тремя релейными выходами);
- импульсный, совместимый для работы в существующих системах с использованием контроллеров (имеются реле пожара и неисправности);
- адресный для работы в системе EQP (Eagle Quantum Premier). В данной модели релейный и аналоговый выходы отсутствуют;
- коммуникационный для работы с HART-коммуникатором.

3-х цветный светодиод на фронтальной плоскости извещателя выполняет роль индикатора нормального режима работы и оповещает персонал о случаях пожарной тревоги или неисправности. Применение контролируемого микропроцессором обогрева оптики повышает устойчивость к влаге и образованию наледи.

Корпус извещателя Х3302 выполняется из алюминия без примесей меди или нержавеющей стали со степенью защиты оболочки от воздействий внешней среды IP66 по ГОСТ 14254.

Ниже приводится перечень дополнительных руководств по эксплуатации (РЭ), связанных с применением извещателя Х3302:

<table>
<thead>
<tr>
<th>Название</th>
<th>Номер документа</th>
</tr>
</thead>
<tbody>
<tr>
<td>Извещатель с импульсным выходом</td>
<td>95-3578</td>
</tr>
<tr>
<td>Извещатель адресный</td>
<td>95-3533</td>
</tr>
<tr>
<td>Инструкция по применению протокола связи HART</td>
<td>95-3613</td>
</tr>
</tbody>
</table>
Рис. 1. Габаритные размеры извещателя в дюймах (см).

<table>
<thead>
<tr>
<th>Источник ложной тревоги</th>
<th>Расстояние до источника, (м)</th>
<th>Сигнал тревоги при модулированном вх. сигнале</th>
<th>Сигнал тревоги при немодулированном вх. сигнале</th>
</tr>
</thead>
<tbody>
<tr>
<td>Солнечный свет - прямой и отражённый</td>
<td>0.9 1,2 1,5 2,4</td>
<td>Отсутствует</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Вибрация</td>
<td>Отсутствует</td>
<td>Отсутствует</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Излучение от электродуговой сварки</td>
<td>6,1 4,6 3,0 1,5</td>
<td>Отсутствует</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Излучение от натриевой лампы 70 Вт</td>
<td>3,0 2,4 1,5 0,9</td>
<td>Отсутствует</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Излучение от газоразрядной лампы 250 Вт</td>
<td>3,0 2,4 1,5 0,9</td>
<td>Отсутствует</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Излучение от лампы накаливания 500 Вт</td>
<td>3,0 2,4 1,5 0,9</td>
<td>Отсутствует</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Излучение от галогеновой лампы 500 Вт, с защитным стеклом</td>
<td>4,6 3,0 2,4 1,5</td>
<td>Отсутствует</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Излучение от электрического обогревателя мощностью 1500 Вт</td>
<td>3,0 2,4 1,5 0,9</td>
<td>Отсутствует</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Излучение от двух 34 Вт флуоресцентных ламп</td>
<td>1,5 1,2 0,9 0,6</td>
<td>Отсутствует</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>Источник ложной тревоги</td>
<td>Расстояние до источника, (м)</td>
<td>Тестовый очаг/Расход (см/м)</td>
<td>Расстояние до очага, (м)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Солнечный свет — прямой, немодулированный сигнал *</td>
<td>—</td>
<td>H2/50</td>
<td>15,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H2/100</td>
<td>15,2</td>
</tr>
<tr>
<td>Солнечный свет — прямой модулированный сигнал *</td>
<td>—</td>
<td>H2/200</td>
<td>4,6</td>
</tr>
<tr>
<td>Солнечный свет — отражённый немодулированный сигнал *</td>
<td>—</td>
<td>H2/50</td>
<td>15,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H2/100</td>
<td>15,2</td>
</tr>
<tr>
<td>Солнечный свет — отражённый модулированный сигнал *</td>
<td>—</td>
<td>H2/100</td>
<td>15,2</td>
</tr>
<tr>
<td>Излучение от электродуговой сварки, непрерывное</td>
<td>6,1</td>
<td>H2/100</td>
<td>30,5</td>
</tr>
<tr>
<td>Излучение от электродуговой сварки, модулированный сигнал</td>
<td>6,1</td>
<td>H2/100</td>
<td>21,3</td>
</tr>
<tr>
<td>Излучение от катодной памяти 70 Вт, немодулированное</td>
<td>3</td>
<td>H2/100</td>
<td>30,5</td>
</tr>
<tr>
<td>Излучение от катодной памяти 70 Вт, модулированное</td>
<td>3</td>
<td>H2/100</td>
<td>30,5</td>
</tr>
<tr>
<td>Излучение от газовых ламп 250 Вт, немодулированное</td>
<td>3</td>
<td>H2/100</td>
<td>30,5</td>
</tr>
<tr>
<td>Излучение от газовых ламп 250 Вт, модулированное</td>
<td>3</td>
<td>H2/100</td>
<td>30,5</td>
</tr>
<tr>
<td>Излучение от ламп газоразрядных ламп 300 Вт, немодулированное</td>
<td>3</td>
<td>H2/100</td>
<td>30,5</td>
</tr>
<tr>
<td>Излучение от ламп газоразрядных ламп 300 Вт, модулированное</td>
<td>3</td>
<td>H2/100</td>
<td>30,5</td>
</tr>
<tr>
<td>Излучение от галогеновых ламп 500 Вт, с защитным стеклом, немодулированное</td>
<td>4,6</td>
<td>H2/100</td>
<td>30,5</td>
</tr>
<tr>
<td>Излучение от галогеновых ламп 500 Вт, с защитным стеклом, модулированное</td>
<td>4,6</td>
<td>H2/100</td>
<td>30,5</td>
</tr>
<tr>
<td>Излучение от электрического обогревателя мощностью 1500 Вт, немодулированное</td>
<td>3</td>
<td>H2/100</td>
<td>30,5</td>
</tr>
<tr>
<td>Излучение от электрического обогревателя мощностью 1500 Вт, модулированное</td>
<td>3</td>
<td>H2/100</td>
<td>30,5</td>
</tr>
<tr>
<td>Излучение от двух флуоресцентных ламп 34 Вт, немодулированное</td>
<td>1,5</td>
<td>H2/100</td>
<td>30,5</td>
</tr>
<tr>
<td>Излучение от двух флуоресцентных ламп 34 Вт, модулированное</td>
<td>1,5</td>
<td>H2/100</td>
<td>30,5</td>
</tr>
</tbody>
</table>

* Источник вне помещений.
** Для модели EOR время отклика добавляется 2 секунды.

** ДИАГРАМ ВЛАЖНОСТИ** — Извещатель сохраняет работоспособность при относительной влажности воздуха от 0...95%, допускается кратковременное воздействие 100% влажности с конденсацией.

** УГОЛ ОБЗОРА** — Извещатель имеет угол обзора не менее 90° в горизонтальном направлении с максимальным расстоянием обнаружения как вдоль оптической оси, так и под углом к оптической оси при обнаружении пламени водорода и метана.

ВРЕМЯ ОТКЛИКА, с — Типовое время отклика ≤ 10

Монтажные провода и кабели — Рекомендуется использовать экранированный кабель с номинальным сечением проводов от 22 AWG (0,3 мм²) до 12 AWG (2,5 мм²). На входе извещателя должно обеспечиваться напряжение питания пост.тока не менее 18 B.

Кабельные вводы — Четыре отверстия размером M25 или 3/4 дюйма NPT, герметизация вводов не требуется.

Сертификат Соответствия — Сертификат Соответствия № СПБ001.В00972.

Сертификат Соответствия ГОСТ Р — Сертификат Соответствия ГОСТ Р №. РОСС 14254 — US.

Материал корпуса — Алюминий без примеси меди или нержавеющая сталь марки 316.

Транспортировочный вес (приблизительный), кг — Алюминиевый корпус — 2,7
Корпус из нержавеющей стали — 4,5
Монтажный кронштейн из алюминия — 2,75
Монтажный кронштейн из нерж стали — 6,4

Габаритные размеры — см. рис. 1.

Гарантийный срок — 5 лет.
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ВРЕМЯ ГОТОВНОСТИ ПОСЛЕ ВКЛЮЧЕНИЯ
ТЕМПЕРАТУРНЫЙ ДИАПАЗОН
ПОТРЕБЛЯЕМАЯ МОЩНОСТЬ, Вт —
Без подогревателя: в дежурном режиме при 24 В — 4,0
в режиме "Пожар" при 24 В — 5,2
в дежурном режиме при 30 В — 4,5
в режиме "Пожар" при 30 В — 6,5
Только подогреватель, макс. — 8,0
Общая при 32 В с включённым подогревателем — 17,0
Только подогреватель, макс.
Оконечное сопротивление шлейфа (EOL): рассеивающая, Вт рабочая допустимая, Вт, макс. — 5,0 — 2,5
Тип сопротивления EOL – керамическое, проволочное.

ВРЕМЯ ГОТОВНОСТИ ПОСЛЕ ВКЛЮЧЕНИЯ, с —
Начальная индикация неисправности прекращается через 0,5 с.
Готовность к индикации сигнала тревоги — 30

НАТРУЗОЧНЫЕ ХАРАКТЕРИСТИКИ РЕЛЕ —
Реле пожара – двухполюсное на два направления, нормально разомкнутое/нормально замкнутое контакты рассчитаны на коммутацию тока 5 А при напряжении пост. тока до 30 В, в дежурном режиме нормально обесточено, работает в режиме с фиксацией или без неё.
Выходные клеммы задублированы.
Реле неисправности – одно полюсное на одно направление, нормально разомкнутые контакты рассчитаны на коммутацию тока 5 А при напряжении пост. тока до 30 В, в дежурном режиме нормально находится под напряжением и контакты замкнуты, что указывает на отсутствие неисправности, работает в режиме с фиксацией или без неё.
Выходные клеммы задублированы.
Вспомогательное реле – двухполюсное на два направления, нормально разомкнутый/нормально замкнутый контакты рассчитаны на коммутацию тока 5 А при напряжении пост. тока до 30 В, в дежурном режиме нормально находится под напряжением, работает в режиме с фиксацией или без неё.

ТОКОВЫЙ ВЫХОД (ОПЦИЯ) —
Аналоговый выход 0-20 мА (± 0,3 мА) пост. тока может быть нагружен на шлейф сопротивлением 500 Ом макс. при напряжении питания пост. тока от 18 до 19,8 В, и сопротивлением 600 Ом макс. при напряжении питания пост. тока от 20 до 30 В.

ТЕМПЕРАТУРНЫЙ ДИАПАЗОН —
Эксплуатация: -55°С ... + 75° С
Хранение: - 55°С ... + 85° С
Примечание: 1. Температура эксплуатации указана для непрерывного режима работы и не распространяется на условие холостого пуска.
2. Максимальная температура внешней среды не должна превышать значений для соответствующего температурного класса взрывозащищённого оборудования, см. параграф Сертификации.

ВЫСОКАЯ ЧУВСТВИТЕЛЬНОСТЬ

<table>
<thead>
<tr>
<th>Источник ложной тревоги</th>
<th>Расстояние до источника, (м)</th>
<th>Тестовый чёт/Расход (сл/м)</th>
<th>Расстояние до очага, (м)</th>
<th>Время отклика типа/в, (с)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Солнечный свет – прямой, немодулированный*</td>
<td>---</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>5</td>
</tr>
<tr>
<td>Солнечный свет – прямой, модулированный*</td>
<td>H2 / 100</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Солнечный свет – отражённый, немодулированный*</td>
<td>---</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>3</td>
</tr>
<tr>
<td>Солнечный свет – отражённый, модулированный*</td>
<td>H2 / 100</td>
<td>7,6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Испускание от электродуговой сварки, непрерывное</td>
<td>4,6</td>
<td>H2 / 100</td>
<td>22,9</td>
<td>3</td>
</tr>
<tr>
<td>Испускание от электродуговой сварки, модулированное</td>
<td>4,6</td>
<td>H2 / 100</td>
<td>16</td>
<td>3,5</td>
</tr>
<tr>
<td>Испускание от напряженной лампы 70 Вт, немодулированное</td>
<td>2,4</td>
<td>H2 / 100</td>
<td>22,9</td>
<td>3,5</td>
</tr>
<tr>
<td>Испускание от напряженной лампы 70 Вт, модулированное</td>
<td>2,4</td>
<td>H2 / 100</td>
<td>22,9</td>
<td>2,5</td>
</tr>
<tr>
<td>Испускание от лампы газоразрядной лампы 250 Вт, немодулированное</td>
<td>2,4</td>
<td>H2 / 100</td>
<td>22,9</td>
<td>2,5</td>
</tr>
<tr>
<td>Испускание от лампы газоразрядной лампы 250 Вт, модулированное</td>
<td>2,4</td>
<td>H2 / 100</td>
<td>16</td>
<td>2,5</td>
</tr>
<tr>
<td>Испускание от лампы накаливания 300 Вт, немодулированное</td>
<td>2,4</td>
<td>H2 / 100</td>
<td>22,9</td>
<td>3</td>
</tr>
<tr>
<td>Испускание от лампы накаливания 300 Вт, модулированное</td>
<td>2,4</td>
<td>H2 / 100</td>
<td>13,7</td>
<td>2</td>
</tr>
<tr>
<td>Испускание от галогеновой лампы 500 Вт, с защитным стеклом, немодулированное</td>
<td>3</td>
<td>H2 / 100</td>
<td>22,9</td>
<td>2,5</td>
</tr>
<tr>
<td>Испускание от галогеновой лампы 500 Вт, с защитным стеклом, модулированное</td>
<td>3</td>
<td>H2 / 100</td>
<td>7,9</td>
<td>1,5</td>
</tr>
<tr>
<td>Испускание от электрического обогревателя мощностью 1500 Вт, немодулированное</td>
<td>2,4</td>
<td>H2 / 100</td>
<td>22,9</td>
<td>2,5</td>
</tr>
<tr>
<td>Испускание от электрического обогревателя мощностью 1500 Вт, модулированное</td>
<td>2,4</td>
<td>H2 / 100</td>
<td>9,1</td>
<td>5,5</td>
</tr>
<tr>
<td>Испускание от двух флуоресцентных ламп 34 Вт, немодулированное</td>
<td>1,2</td>
<td>H2 / 100</td>
<td>22,9</td>
<td>3</td>
</tr>
<tr>
<td>Испускание от двух флуоресцентных ламп 34 Вт, модулированное</td>
<td>1,2</td>
<td>H2 / 100</td>
<td>22,9</td>
<td>2,5</td>
</tr>
</tbody>
</table>

* Испытания вне помещения.
** Для модели EQP ко времени отклика добавляются 2 секунды.
Характеристики, подтверждённые американским органом по сертификации FM Approvals

Средняя чувствительность

<table>
<thead>
<tr>
<th>Источник ложной тревоги</th>
<th>Расстояние до источника, (м)</th>
<th>Тестовый очаг/Расход (сл/м)</th>
<th>Расстояние до очага, (м)</th>
<th>Время отклика типовое, (с)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Солнечный свет — прямой, немодулированный*</td>
<td>---</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>6</td>
</tr>
<tr>
<td>Солнечный свет — прямой, модулированный*</td>
<td>---</td>
<td>H2 / 200</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Солнечный свет — отражённый, немодулированный*</td>
<td>---</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>3</td>
</tr>
<tr>
<td>Излучение от электродуговой сварки, непрерывное</td>
<td>3</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>3</td>
</tr>
<tr>
<td>Излучение от электродуговой сварки, модулированное</td>
<td>3</td>
<td>H2 / 100</td>
<td>10,7</td>
<td>4</td>
</tr>
<tr>
<td>Излучение от натриевой лампы 70 Вт, немодулированное</td>
<td>1,5</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>2,5</td>
</tr>
<tr>
<td>Излучение от натриевой лампы 70 Вт, модулированное</td>
<td>1,5</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>3</td>
</tr>
<tr>
<td>Излучение от газоразрядной лампы 250 Вт, немодулированное</td>
<td>1,5</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>3</td>
</tr>
<tr>
<td>Излучение от газоразрядной лампы 250 Вт, модулированное</td>
<td>1,5</td>
<td>H2 / 100</td>
<td>10,7</td>
<td>2</td>
</tr>
<tr>
<td>Излучение от лампы накаливания 300 Вт, немодулированное</td>
<td>1,5</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>2</td>
</tr>
<tr>
<td>Излучение от лампы накаливания 300 Вт, модулированное</td>
<td>1,5</td>
<td>H2 / 100</td>
<td>9,1</td>
<td>3</td>
</tr>
<tr>
<td>Излучение от галогеновой лампы 500 Вт, с защитным стеклом, немодулированное</td>
<td>2,4</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>2</td>
</tr>
<tr>
<td>Излучение от галогеновой лампы 500 Вт, с защитным стеклом, модулированное</td>
<td>2,4</td>
<td>H2 / 100</td>
<td>5,3</td>
<td>2</td>
</tr>
<tr>
<td>Излучение от электрического обогревателя мощностью 1500 Вт, немодулированное</td>
<td>1,5</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>4</td>
</tr>
<tr>
<td>Излучение от электрического обогревателя мощностью 1500 Вт, модулированное</td>
<td>1,5</td>
<td>H2 / 100</td>
<td>6,1</td>
<td>3</td>
</tr>
<tr>
<td>Излучение от двух флуоресцентных ламп 34 Вт, немодулированное</td>
<td>0,9</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>2,5</td>
</tr>
<tr>
<td>Излучение от двух флуоресцентных ламп 34 Вт, модулированное</td>
<td>0,9</td>
<td>H2 / 100</td>
<td>15,2</td>
<td>3</td>
</tr>
</tbody>
</table>

* Испытания вне помещения.
** Для модели EQP ко времени отклика добавляются 2 секунды.

ПРЕДУПРЕЖДЕНИЕ
Перед установкой и включением извещателя следует внимательно ознакомиться с настоящим руководством по эксплуатации. Любые отклонения от рекомендаций и инструкций настоящего руководства могут ухудшить работу системы и обеспечить пожарной безопасности.

ВНИМАНИЕ!
Особенностью извещателя Х330 является возможность автоматической проверки оптических цепей (функция oi®) — калиброванная проверка рабочих характеристик, выполняемая ежеминутно для подтверждения правильного функционирования извещателя. Извещатель не требует использования внешней тестовой лампы для проверки его работоспособности.

ХАРАКТЕРНЫЕ ОСОБЕННОСТИ
- Обнаружение очагов горения водорода.
- Высокая устойчивость к ложным срабатываниям.
- Срабатывание на загорания в присутствии модулированного излучения чёрного тела (как, например, нагреватели, печи, турбины).
- Повышенная устойчивость к влаге и образование наледи за счёт применения контролируемого микропроцессором подогрева оптики.
- Использование автоматического или ручного методов, или магнитного переключателя для проверки целостности оптических цепей (функция oi).
- Стандартная комплектация с реле пожара, неисправности и вспомогательным реле.
- Изолированный аналоговый выход 0-20 мА (опция).
- Наличие адресной модели, применяемой в системе EQP.
- Стандартная комплектация с реле пожара, неисправности и вспомогательным реле.
- Использование 3-х цветного светодиода на лицевой стороне извещателя для индикации нормального режима работы и оповещения персонала о состояниях пожарной тревоги или неисправности.
- Устойчивость к суровым природным условиям эксплуатации и загрязнений окружающей среды.
- Отвечает соответствующим нормам по устойчивости к радиопомехам и ЭМП.
- Взрывозащищённое исполнение корпуса.
- Конструкция с использованием встроенного отсека концевой заделки полевых кабелей.
- Использование монтажного кронштейна, облегчающего ориентирование извещателя.
- Гарантийный срок 5 лет.

Преимущественная технология извещателя Х330 охарактеризована в следующих патентах США: 5,995,008; 5,804,825 и 5,850,182.
Перечень таблиц
Таблица 1 — Индикация состояний извещателя .. 12
Таблица 2 — Индикация режимов работы .. 13
Таблица 3 — Обнаружение неисправностей .. 32

Перечень рисунков
Рисунок 1 — Габаритные размеры извещателя 10
Рисунок 2 — Установка извещателя по отношению к горизонту 18
Рисунок 3 — Внешний вид извещателя Х3302 .. 19
Рисунок 4 — Установочные размеры монтажного кронштейна Q9033 21
Рисунок 5 — Клеммная плата извещателя Х3302 21
Рисунок 6 — Схема клеммных контактов ... 22
Рисунок 7 — Пример монтажа оконечного сопротивления EOL 23
Рисунок 8 — Пример схемы подключения извещателя во взрывозащищённом исполнении EExd .. 24
Рисунок 9 — Пример схемы подключения извещателя во взрывозащищённом исполнении Exde ... 24
Рисунок 10 — Схема подключения извещателя с неизолированным выходом 0-20 мА (извещатель в качестве источника тока) 25
Рисунок 11 — Схема подключения извещателя с неизолированным выходом 0-20 мА (извещатель в качестве потребителя тока) 25
Рисунок 12 — Схема подключения извещателя с изолированным выходом 0-20 мА (извещатель в качестве источника тока) 26
Рисунок 13 — Схема подключения извещателя с изолированным выходом 0-20 мА (извещатель в качестве потребителя тока) 26
Рисунок 14 — Клеммная плата извещателя Х3302 адресной модели EQP 27
Рисунок 15 — Схема клеммных контактов адресной модели извещателя 28
Рисунок 16 — Схема типовой системы EQP .. 29
Рисунок 17 — Расположение адресных переключателей 30
Рисунок 18 — Адресные переключатели ... 31
Рисунок 19 — Снятие рефлектора ви ... 34

Низкая чувствительность

<table>
<thead>
<tr>
<th>Источник ложной тревоги</th>
<th>Расстояние до источника, (m)</th>
<th>Тестовый расход, (l/min)</th>
<th>Расстояние до очага, (m)</th>
<th>Время отклика типа, (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Солнечный свет — прямой, немодулированный*</td>
<td>—</td>
<td>(H_2 / 100)</td>
<td>7,6</td>
<td>3,5</td>
</tr>
<tr>
<td>Солнечный свет — прямой, модулированный*</td>
<td>(H_2 / 200)</td>
<td>3</td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>Солнечный свет — отражённый, немодулированный*</td>
<td>—</td>
<td>(H_2 / 100)</td>
<td>7,6</td>
<td>2,5</td>
</tr>
<tr>
<td>Солнечный свет — отражённый, модулированный*</td>
<td>(H_2 / 100)</td>
<td>4,6</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>Источник ложной тревоги</td>
<td>1,5</td>
<td>(H_2 / 100)</td>
<td>7,6</td>
<td>3</td>
</tr>
<tr>
<td>Источник ложной тревоги</td>
<td>1,5</td>
<td>(H_2 / 100)</td>
<td>5,3</td>
<td>2,5</td>
</tr>
<tr>
<td>Источник ложной тревоги</td>
<td>0,9</td>
<td>(H_2 / 100)</td>
<td>7,6</td>
<td>3</td>
</tr>
<tr>
<td>Источник ложной тревоги</td>
<td>0,9</td>
<td>(H_2 / 100)</td>
<td>7,6</td>
<td>2</td>
</tr>
<tr>
<td>Источник ложной тревоги</td>
<td>0,9</td>
<td>(H_2 / 100)</td>
<td>5,3</td>
<td>2</td>
</tr>
<tr>
<td>Источник ложной тревоги</td>
<td>0,9</td>
<td>(H_2 / 100)</td>
<td>7,6</td>
<td>3</td>
</tr>
<tr>
<td>Источник ложной тревоги</td>
<td>0,9</td>
<td>(H_2 / 100)</td>
<td>4,6</td>
<td>2</td>
</tr>
<tr>
<td>Источник ложной тревоги</td>
<td>1,5</td>
<td>(H_2 / 100)</td>
<td>7,6</td>
<td>3,5</td>
</tr>
<tr>
<td>Источник ложной тревоги</td>
<td>1,5</td>
<td>(H_2 / 100)</td>
<td>3</td>
<td>2,5</td>
</tr>
<tr>
<td>Источник ложной тревоги</td>
<td>0,9</td>
<td>(H_2 / 100)</td>
<td>7,6</td>
<td>2</td>
</tr>
<tr>
<td>Источник ложной тревоги</td>
<td>0,9</td>
<td>(H_2 / 100)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Источник ложной тревоги</td>
<td>0,9</td>
<td>(H_2 / 100)</td>
<td>7,6</td>
<td>3</td>
</tr>
<tr>
<td>Источник ложной тревоги</td>
<td>0,9</td>
<td>(H_2 / 100)</td>
<td>7,6</td>
<td>3,5</td>
</tr>
</tbody>
</table>

* Испытания вне помещения.
** Для модели EQP ко времени отклика добавляются 2 секунды.
Характеристики, подтверждённые американским органом по сертификации FM Approvals

95-3576 48

ДЕТАЛЬНЫЙ УГОЛ ОБЗОРА ИЗВЕЩАТЕЛЯ ХЭ302
(дистанция указана в футах, 1 фут = 0.305 м)

Угол обзора для водородного пламени (Факел 0,61 / 100 см/м2) при очень высокой чувствительности.

Угол обзора для Метанола (0,3 x 0,3 м) при высокой чувствительности.

Угол обзора для водородного пламени (Факел 0,61 / 100 см/м2) при высокой чувствительности.

Угол обзора для Метанола (0,3 x 0,3 м) при высокой чувствительности.

Вертикальный угол обзора. Извещатель установлен под углом 45о к горизонту.

Вертикальный угол обзора. Извещатель установлен под углом 45о к горизонту.

Вертикальный угол обзора. Извещатель установлен под углом 45о к горизонту.

Вертикальный угол обзора. Извещатель установлен под углом 45о к горизонту.

Оглавление

ХАРАКТЕРНЫЕ ОСОБЕННОСТИ .. 7
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ... 8
УСТРОЙСТВО И ОПИСАНИЕ РАБОТЫ 11
ВЫХОДНЫЕ СИГНАЛЫ .. 12
Аналогоовый 0-20 мА .. 12
Адресный (модель EQP) ... 13
СВЕТОДИОДНЫЙ ИНДИКАТОР СОСТОЯНИЙ 13
ОПИСАНИЕ ТЕСТИРОВАНИЯ ОПТИКИ 12
Автоматический режим ы .. 12
Магнитный переключатель ы / Ручной режим проверки ы 13
КОММУНИКАЦИОННАЯ СВЯЗЬ ... 14
КЛЕММНЫЙ ОТСЕК ... 14
РЕГИСТРАЦИЯ ДАННЫХ ... 15
ОСОБЫЕ ИНФОРМАЦИЯ ПО ПРИМЕНЕНИЮ 15
Характеристики чувствительности извещателя 15
Важные замечания по применению 15
Сварка .. 15
Осветительные лампы .. 15
Помехоустойчивость .. 15
Источники углодерстых пожаров ... 15
МЕРЫ ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ 16
УСТАНОВОЧНЫЕ И ЭЛЕКТРОМОНТАЖНЫЕ РАБОТЫ 17
Расположение извещателя ... 17
Ориентация извещателя .. 18
Обеспечение влагозащищенности .. 18
Процедура электрического монтажа 19
Требования к проводам и кабелям ... 19
Установка извещателя ... 20
Модели с релейным и аналоговым 0-20 мА выходами 20
Окончное сопротивление шлейфа (EOL) 23
Модель извещателя в адресном исполнении (модель EQP) 27
УСТАНОВКА АДРЕСОВ УСТРОЙСТВ СИСТЕМЫ 30
ПУСКО-НАЛАДЧНЫЕ РАБОТЫ ... 31
ОБНАРУЖЕНИЕ И УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ 32
ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ... 33
Процедура очистки смотровых окошек 33
Снятие и замена рефлектора ы .. 33
ЭНЕРГОПИТАНИЕ СЧЁТЧИКА ВРЕМЕНИ 35
ЗАПАСНЫЕ ЧАСТИ ... 35
Угол обзора для водородного пламени (Факел 0,61 / 100 сл/м) при средней чувствительности.

Угол обзора для Метанола (0,3 х 0,3 м) при низкой чувствительности.

Вертикальный угол обзора. Извещатель установлен под углом 45° к горизонту.
ИЗВЕЩАТЕЛЬ ПОЖАРНЫЙ ПЛАМЕНИ ДЛЯ ОБНАРУЖЕНИЯ ГОРЕНИЯ ВОДОРОДА ВЗРЫВОЗАЩИЩЁННЫЙ
X3302 Protect-IR®
Характеристики, подтверждённые американским органом по сертификации FM Approvals

Угол обзора для водородного пламени
(Факел 0,61 / 100 сл/м) при средней чувствительности.

Угол обзора для Метанола (0,3 х 0,3 м)
при средней чувствительности.

Угол обзора для водородного пламени
(Факел 0,61 / 100 сл/м) при низкой чувствительности.

Угол обзора для Метанола (0,3 х 0,3 м)
при низкой чувствительности.

Извещатель установлен под углом 45о к горизонту.

Вертикальный угол обзора.

Извещатель установлен под углом 45о к горизонту.

Вертикальный угол обзора.

Извещатель установлен под углом 45о к горизонту.

Вертикальный угол обзора.

Извещатель установлен под углом 45о к горизонту.
Известный пожарный пламени
для обнаружения горения водорода
X3302 ProtectIR®